Removal of lithium from water by aminomethylphosphonic acid containing resin

Aydın Çiçek, Onur Yılmaz, Ozgur Arar

Abstract


This paper gives an overview of the ability of an aminomethyl­phos­phonic acid-containing chelating resin for the removal of lithium from water. The studies were performed under various conditions, such as resin dose, initial Li+ concentration, solution pH and solution temperature. The results showed that the sorption of Li+ reached equilibrium within 15 min and the experimental data were well-fitted by the pseudo-second-order kinetic model. The Li+ sorp­tion was highly pH dependent, and the optimum pH for Li+ removal was ≥3. Isotherm sorption data displayed good correlation with the Langmuir model, and the maximum monolayer sorption capacity of the resin found to be 13.65 mg g-1. Thermodynamic studies suggested that Li+ sorption onto the chelating resin was an exothermic and spontaneous process in nature. The resin could be regenerated by 0.1 M HCl, NaCl or H2SO4 with > 99 % efficiency. Desorption of Li+ with 0.1 M NaCl resulted in no changes in the uptake capacity through four sequential sorption/desorption cycles.


Keywords


chelating resin; ion exchange; lithium; lewatit TP260

Full Text:

PDF (2,043 kB)

References


P. Meshram, B. D. Pandey, T. R. Mankhand, Hydrometallurgy 150 (2014) 192

H. Aral, A. Vecchio-Sadus, Ecotoxicol. Environ. Saf. 70 (2008) 349

B. Swain, Sep. Purif. Technol. 172 (2017) 388

L. Wang, C. G. Meng, W. Ma, Colloids Surfaces, A 334 (2009) 34

Y. Miyai, K. Ooi, S. Katoh, Sep. Sci. Technol. 23 (1988) 179

H. H. Ussing, P. Kruhoffer, H. J. Thaysen, N. H. Thorn, The Alkali Metal Ions in Biology: I. The Alkali Metal Ions in Isolated Systems and Tissues, Springer, Berlin, 2013

W. G. Berl, Physical Methods in Chemical Analysis, Elsevier, Amsterdam, 1961

G. Coşkun, İ. Şimşek, Ö. Arar, Ü. Yüksel, M. Yüksel, Desalin. Water Treat. 57 (2016) 25739

E. Özbunar, S. Kırca, Ö. Arar, Ü. Yüksel, Anal. Lett. 50 (2017) 1657

Handbook of Biochemistry and Molecular Biology, R. L. Lundblad, F. M. Macdonald, Eds., CRC Press, Taylor & Francis, Boca Raton, FL, 2010

B. Alyüz, S. Veli, J. Hazard. Mater. 167 (2009) 482

S. Deniz, N. Taşci, E. Yetimoğlu, M. Kahraman, J. Serb. Chem. Soc. 82 (2017) 215

J. Milovanović, S. Eich-Greatorex, T. Krogstad, V. Rakić, N. Rajić, J. Serb. Chem. Soc. 80 (2015) 1203

R. M. Alosmanov, J. Serb. Chem. Soc. 81 (2016) 907

A. Altinisik, Y. Seki, S. Ertas, E. Akar, E. Bozacı, Y. Seki, Fibers Polym. 16 (2015) 370

A. A. Zagorodni, Ion Exchange Materials: Properties and Applications, Elsevier, Oxford, 2007

Y. S. Ho, J. Hazard. Mater. 136 (2006) 681

Y. S. Ho, G. McKay, Process Biochem. 34 (1999) 451

Y. Aşçi, Ş. Kaya, Desalin. Water Treat. 52 (2014) 267

Z. Aksu, Process Biochem. 38 (2002) 89

Ö. Arar, Anadolu Univ. J. Sci. Technol. Appl. Sci. Eng. 17 (2016) 530

R. Chitrakar, H. Kanoh, Y. Miyai, K. Ooi, Ind. Eng. Chem. Res. 40 (2001) 2054

X. Luo, B. Guo, J. Luo, F. Deng, S. Zhang, S. Luo, J. Crittenden, ACS Sustain. Chem. Eng. 3 (2015) 460

S. Zandevakili, M. Ranjbar, M. Ehteshamzadeh, Hydrometallurgy 149 (2014) 148

K. S. Chung, J. C. Lee, E. J. Kim, K. C. Lee, Y. S. Kim, K. Ooi, Mater. Sci. Forum 449–

–452 (2004) 277

T. Ryu, J. Shin, J. Ryu, I. Park, H. Hong, B.-G. Kim, K.-S. Chung, Mater. Trans. 54 (2013) 1029

Y. K. Recepoğlu, N. Kabay, İ. Yılmaz-Ipek, M. Arda, K. Yoshizuka, S. Nishihama, M. Yüksel, Solvent Extr. Ion Exch. 6299 (2017) 1.




DOI: https://doi.org/10.2298/JSC170930020C

Copyright (c) 2018 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.797 (139 of 171 journals)
5 Year Impact Factor 0,923 (134 of 171 journals)