Removal of lithium from water by aminomethylphosphonic acid containing resin
Main Article Content
Abstract
This paper gives an overview of the ability of an aminomethylphosphonic acid-containing chelating resin for the removal of lithium from water. The studies were performed under various conditions, such as resin dose, initial Li+ concentration, solution pH and solution temperature. The results showed that the sorption of Li+ reached equilibrium within 15 min and the experimental data were well-fitted by the pseudo-second-order kinetic model. The Li+ sorption was highly pH dependent, and the optimum pH for Li+ removal was ≥3. Isotherm sorption data displayed good correlation with the Langmuir model, and the maximum monolayer sorption capacity of the resin found to be 13.65 mg g-1. Thermodynamic studies suggested that Li+ sorption onto the chelating resin was an exothermic and spontaneous process in nature. The resin could be regenerated by 0.1 M HCl, NaCl or H2SO4 with > 99 % efficiency. Desorption of Li+ with 0.1 M NaCl resulted in no changes in the uptake capacity through four sequential sorption/desorption cycles.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
P. Meshram, B. D. Pandey, T. R. Mankhand, Hydrometallurgy 150 (2014) 192
H. Aral, A. Vecchio-Sadus, Ecotoxicol. Environ. Saf. 70 (2008) 349
B. Swain, Sep. Purif. Technol. 172 (2017) 388
L. Wang, C. G. Meng, W. Ma, Colloids Surfaces, A 334 (2009) 34
Y. Miyai, K. Ooi, S. Katoh, Sep. Sci. Technol. 23 (1988) 179
H. H. Ussing, P. Kruhoffer, H. J. Thaysen, N. H. Thorn, The Alkali Metal Ions in Biology: I. The Alkali Metal Ions in Isolated Systems and Tissues, Springer, Berlin, 2013
W. G. Berl, Physical Methods in Chemical Analysis, Elsevier, Amsterdam, 1961
G. Coşkun, İ. Şimşek, Ö. Arar, Ü. Yüksel, M. Yüksel, Desalin. Water Treat. 57 (2016) 25739
E. Özbunar, S. Kırca, Ö. Arar, Ü. Yüksel, Anal. Lett. 50 (2017) 1657
Handbook of Biochemistry and Molecular Biology, R. L. Lundblad, F. M. Macdonald, Eds., CRC Press, Taylor & Francis, Boca Raton, FL, 2010
B. Alyüz, S. Veli, J. Hazard. Mater. 167 (2009) 482
S. Deniz, N. Taşci, E. Yetimoğlu, M. Kahraman, J. Serb. Chem. Soc. 82 (2017) 215
J. Milovanović, S. Eich-Greatorex, T. Krogstad, V. Rakić, N. Rajić, J. Serb. Chem. Soc. 80 (2015) 1203
R. M. Alosmanov, J. Serb. Chem. Soc. 81 (2016) 907
A. Altinisik, Y. Seki, S. Ertas, E. Akar, E. Bozacı, Y. Seki, Fibers Polym. 16 (2015) 370
A. A. Zagorodni, Ion Exchange Materials: Properties and Applications, Elsevier, Oxford, 2007
Y. S. Ho, J. Hazard. Mater. 136 (2006) 681
Y. S. Ho, G. McKay, Process Biochem. 34 (1999) 451
Y. Aşçi, Ş. Kaya, Desalin. Water Treat. 52 (2014) 267
Z. Aksu, Process Biochem. 38 (2002) 89
Ö. Arar, Anadolu Univ. J. Sci. Technol. Appl. Sci. Eng. 17 (2016) 530
R. Chitrakar, H. Kanoh, Y. Miyai, K. Ooi, Ind. Eng. Chem. Res. 40 (2001) 2054
X. Luo, B. Guo, J. Luo, F. Deng, S. Zhang, S. Luo, J. Crittenden, ACS Sustain. Chem. Eng. 3 (2015) 460
S. Zandevakili, M. Ranjbar, M. Ehteshamzadeh, Hydrometallurgy 149 (2014) 148
K. S. Chung, J. C. Lee, E. J. Kim, K. C. Lee, Y. S. Kim, K. Ooi, Mater. Sci. Forum 449–
–452 (2004) 277
T. Ryu, J. Shin, J. Ryu, I. Park, H. Hong, B.-G. Kim, K.-S. Chung, Mater. Trans. 54 (2013) 1029
Y. K. Recepoğlu, N. Kabay, İ. Yılmaz-Ipek, M. Arda, K. Yoshizuka, S. Nishihama, M. Yüksel, Solvent Extr. Ion Exch. 6299 (2017) 1.