Effect of organic substances on iron-release kinetics in a calcareous soil after basil harvesting

Sedigheh Safarzadeh, Leila Sadegh Kasmaei, Zahra Ahmad Abadi

Abstract


Desorption of iron from soil is important for evaluating the avail­ability and toxicity of soil Fe in agriculture. The aim of this investigation was to study the effect of organic substances (cow and sheep manures and vermi­compost) on Fe release from a calcareous soil and determine the best models for the description of the Fe desorption kinetics. Organic substances were added to soils at the rate of 3 %. Basil (Ocimum basilicum L.) seeds were sown in each pot and pots were kept at 24–25 °C at about field capacity for 90 days. After 90 days, plants were harvested and soil samples were used for Fe desorp­tion analysis. Seven kinetic models were evaluated to describe the rate of Fe desorption in soil extracted with diethylenetriaminepentaacetic acid (DTPA). Results showed that Fe release from soil samples increased with time. Release of Fe was rapid at first and then became slower. Iron release in the organic sub­stances treatments was higher than in the unamended soil and the two-constant rate, parabolic diffusion and simple Elovich models were the best equations for the description of Fe release from soils.


Keywords


desorption; manure; vermicompost; kinetics, calcareous soil

Full Text:

PDF (2,223 kB)

References


A. Bermond, G. Varrault, V. Sappin-Didier, M. Mench, Plant Soil 275 (2005) 21

M. McBride, S. Sauve, W. Hendershot, Europ. J. Soil Sci. 48 (1997) 337

M. Mench, D. Baize, B. Mocquot, Environ. Pollut. 95 (1997) 93

A.Voegelin, K. Barmettler, R. Kretzschmar, J. Environ. Qual. 32 (2003). 865

D.L. Sparks, Environmental soil chemistry, Academic Press, San Diego, CA, 2003, pp. 207–228

G. Sposito, The Chemistry of Soils, Oxford Univ Press, Madison, WI, 2008, pp. 195–218

H. Shariatmadari, M. Shirvani, A. Jafari, Geoderma 132 (2006) 261

P. Del Castilho, W. Chardon, W. Salomons, J. Environ. Qual. 22 (1993) 689

N. Barrow, Europ. J. Soil Sci. 30 (1979) 259

S. Kuo, E. Lotse, Soil Sci. 116 (1973) 400

J. Yu, D. Klarup, Water. Air. Soil Pollut. 75 (1994) 205

H. Motaghian, A. Hosseinpur, J. Soil Sci. Plant Nutr. 13 (2013) 664

A. Reyhanitabar, N. Karimian, Am.-Eur. J Agric. Environ. Sci. 4 (2008) 287

M. Jalali, S. Moharami, Commun. Soil Sci. Plant Anal. 44 (2013) 3365

H. Motaghian, A. Hosseinpur, Environ. Earth Sci. 71 (2014) 965

H. Motaghian, A. Hosseinpur, Commun. Soil Sci. Plant Anal. 48 (2017) 2126

G. W. Gee, J. W. Bauder, in Methods of Soil Analysis, D. L. Sparks et al, (eds) American Society of Agronomy, Inc, Madison, WI, 1986, P, 383

G. Thomas, in Methods of Soil Analysis. Part 3. Chemical Methods, D. L. Sparks et al., (Eds.), American Society of Agronomy, Inc., Madison, WI, 1996, p. 475

J. Rhoades, in Methods of Soil Analysis. Part 2, Chemical and Microbiological Properties, D. L. Sparks et al., (Eds.), American Society of Agronomy, Inc., Madison, WI, 1996, p. 417

R. H. Loppert, D. L., in Methods of Soil Analysis. Part 3, Chemical Methods, D. L. Sparks et al., (Eds.), American Society of Agronomy, Inc., Madison, WI, 1996, p. 437

F. S. Watanabe, S. R. Olsen, Soil Sci. Soc. Am. Proc. 29 (1965) 677

W. L. Lindsay, W. A. Norvell, Soil Sci. Soc. Am. J. 42 (1978) 421

H. D. Chapman, D. F. Pratt, Methods of analysis for soil, plant, and water, University of California, Berkeley, CA, 1961, pp. 1–309

S. H. Chien, W. R. Clayton, Soil Sci. Soc. Am. J. 44 (1980) 265

R. G. D. Steel, J. H. Torrie, Principles and procedures of statistics (With special Reference to the Biological Sciences), Mc. Graw-Hill, New York, 1960, pp. 251–481

Y. P. Dang, D. G. Dalal, D.G. Edwards, K.G. Tiller, Soil Sci. Soc. Am. J. 58 (1994) 1392

A. Karaca, Geoderma 122 (2004) 297

L. M. Shuman, Soil Sci. Am. Proc. 39 (1975) 454

B. Mandal, G. C. Hazra, Soil Sci. 162 (1997) 713

M. A. E. Ramadan, A. M. El-Bassiony, A. M. Hoda, Aust. J. Basic. Appl. Sci. 2 (2008) 288

L. Sadegh Kasmaei, M. Fekri, Commun. Soil Sci. Plan. Anal. 43 (2012) 2209

F.J. Stevenson, A. Fitch, in Copper in soils and plants, J. F. Loneragan et al., (Eds.), Academic, Sydney, 1981, p. 70

Y. X. Chen, Q. Lin, Y. M. Luo, Y. F. He, S. J. Zhen, Y. L. Yu, G. M. Tian, M. H. Wong, Chemosphere 50 (2003) 807

E. J. M. Temminghoff, S. E. A. T. Van Der Zee, F. A. M. Dehaan, Eur. J. Soil. Sci. 49 (1998) 617

A. K. M. Arnesen, B. R. Singh, Can. J. Soil Sci. 78 (1999) 531

S. C. Geiger, R. H. Loeppert, J. Plant Nutr. 9 (1986) 229

A. H. Khater, A. M. Zaghloul, in Proceedings of 17th World Conference on Soil Science, Bangkok, Thailand, 2002, pp. 1–9

A. Pavlatou, N. A. Polyzopoulos, J. Soil Sci. 39 (1988) 425

E. Allen, L. Hossner, D. Ming, D. Henninger, Soil Sci. Soc. Am. J. 59 (1995) 248

J. L. Havlin, D. G. Westfall, S. R. Olsen, Soil Sci. Soc. Am. J. 49 (1985) 371

G. Kandpal, P. C. Srivastava, B. Ram, Water Ai. Soil Pollut. 161 (2005) 353

M. J. D. Low, Chem. Rev. 60 (1960) 267

R. J. Atkinson, F. J. Hingston, A. M. Posner, J. P. Quirk, Nature 226 (1970) 148.




DOI: https://doi.org/10.2298/JSC171115019S

Copyright (c) 2018 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.797 (139 of 171 journals)
5 Year Impact Factor 0,923 (134 of 171 journals)