Durability of alkali activated slag in a marine environment: Influence of alkali ion

Irena Nikolić, Milena Tadić, Ivona Janković-Častvan, Vuk V. Radmilović, Velimir R. Radmilović


The durability of alkali-activated steel electric arc furnace slag (EAFS) in a marine environment was evaluated with respect to the chemical composition of the alkaline activator. Two different alkaline activators have been used: a mix­ture of NaOH and Na2SiO3 solutions (Na-activator), as well as a mixture of KOH and K2SiO3 solutions (K-activator). The obtained results gave the insight into the influence of alkaline activator chemistry on the compressive strength and dura­bility of alkali-activated slag (AAS), which was exposed to the damaging sea­water environment. The porosity of AAS was found to be the most important factor with regards to the strength and durability of these materials in marine environment. Sodium based alkali-activated slag (Na-AAS) displayed lower por­osity and higher compressive strength compared to potassium based AAS (K-
-AAS). Lower porosity and thus a lower rate of water uptake by AAS matrix, i.e., the lower sorptivity was exhibited by the Na-AAS when compared to K-AAS. Hence, Na-AAS exhibited better durability in a marine environment.


steel slag; seawater; sorptivity; brucite

Full Text:

PDF (5,334 kB)


T. Sofilić, A. Mladenovič, U. Sofilić, J. Environ. Eng. Landsc. Manage. 19 (2011) 148 (http://dx.doi.org/10.3846/16486897.2011.580910)

H. Motz, J. Geiseler, Waste Manag. 21 (2001) 285 (http://dx.doi.org/10.1016/S0956-053X(00)00102-1)

S. I. Abu-Eishah, A. S. El-Dieb, M. S. Bedir, Constr. Build. Mater. 34 (2012) 2496 (http://dx.doi.org/10.1016/j.conbuildmat.2012.02.012)

C. Pellegrino, P. Cavagnis, F. Faleschini, K. Brunelli, Cem. Concr. Compos. 37 (2013) 232 (http://dx.doi.org/10.1016/j.cemconcomp.2012.09.001)

C. Pellegrino, V. Gaddo, Cem. Concr. Compos. 31 (2009) 663 (http://dx.doi.org/10.1016/j.cemconcomp.2009.05.006)

S. Wu, Y. Xue, Q. Ye, Y. Chen, Build. Environ. 42 (2007) 2580 (http://dx.doi.org/10.1016/j.buildenv.2006.06.008)

L. Muhmood, S. Vitta, D. Venkateswaran, Cem. Concr. Res. 39 (2009) 102 (http://dx.doi.org/10.1016/j.cemconres.2008.11.002)

C. S. Gahan, M. L. Cunha, Å. Sandström, Hydrometallurgy 95 (2009) 190 (http://dx.doi.org/10.1016/j.hydromet.2008.05.042)

A. Drizo, C. Forget, R. P. Chapuis, Y. Comeau, Water Res. 40 (2006) 1547 (http://dx.doi.org/10.1016/j.watres.2006.02.001)

N. C. Okochi, D. W. McMartin, J. Hazard. Mater. 187 (2011) 250 (http://dx.doi.org/10.1016/j.jhazmat.2011.01.015)

L. Ćurković, Š. Cerjan-Stefanović, A. Rastovčan-Mioč, Water Res. 35 (2001) 3436 (http://dx.doi.org/10.1016/S0043-1354(01)00037-9)

D. Križan, B. Živanović, Cem. Concr. Res. 32 (2002) 1181 (http://dx.doi.org/10.1016/S0008-8846(01)00717-7)

W. Chen, H. J. H. Brouwers, J. Mater. Sci. 42 (2007) 428 (http://dx.doi.org/10.1007/s10853-006-0873-2)

A. R. Brough, A. Atkinson, Cem. Concr. Res. 32 (2002) 865 (http://dx.doi.org/10.1016/S0008-8846(02)00717-2)

P. Duxson, J. L. Provis, J. Am. Ceram. Soc. 91 (2008) 386469 (http://dx.doi.org/10.1111/j.1551-2916.2008.02787.x)

F. Puertas, M. Palacios, H. Manzano, J. S. Dolado, A. Rico, J. Rodríguez, J. Eur. Ceram. Soc. 31 (2011) 2043 (http://dx.doi.org/10.1016/j.jeurceramsoc.2011.04.036)

S. Aydin, B. Baradan, Composites, Part B 57 (2014) 166 (http://dx.doi.org/10.1016/j.compositesb.2013.10.001)

M. Ben Haha, G. Le Saout, F. Winnefeld, B. Lothenbach, Cem. Concr. Res. 41 (2011) 301 (http://dx.doi.org/10.1016/j.cemconres.2010.11.016)

K. De Weerdt, H. Justnes, Cem. Concr. Compos. 55 (2015) 215 (http://dx.doi.org/10.1016/j.cemconcomp.2014.09.006)

K. De Weerdt, H. Justnes, M. R. Geiker, Cem. Concr. Compos. 47 (2014) 53 (http://dx.doi.org/10.1016/j.cemconcomp.2013.09.015)

W. Kurdowski, Cem. Concr. Res. 34 (2004) 1555 (http://dx.doi.org/10.1016/j.cemconres.2004.03.023)

F. Puertas, R. De Gutiérrez, A. Fernandez-Jimenez, S. Delvasto, J. Maldonado, Mater. Constr. (Madrid, Spain) 52 (2002) 55 (http://dx.doi.org/https://doi.org/10.3989/mc.2002.v52.i267.326)

H. El-Didamony, A. A. Amer, H. Abd Ela-Ziz, Ceram. Int. 38 (2012) 3773 (http://dx.doi.org/10.1016/j.ceramint.2012.01.024)

C. Hall, Mag. Concr. Res. 41 (1989) 51 (http://dx.doi.org/10.1680/macr.1989.41.147.51)

M. Salman, Ö. Cizer, Y. Pontikes, R. Snellings, L. Vandewalle, B. Blanpain, K. Van Balen, J. Hazard. Mater. 286 (2015) 211 (http://dx.doi.org/10.1016/j.jhaz-mat.2014.12.046)

A. Dakhane, Z. Peng, R. Marzke, N. Neithalath, Adv. Civ. Eng. Mater. 3 (2014) 371 (http://dx.doi.org/https://doi.org/10.1520/ACEM20140005.)

J. H. Sharp, E. M. Gartner, D. E. Macphee, Adv. Cem. Res. 22 (2010) 195 (http://dx.doi.org/10.1680/adcr.2010.22.4.195)

P. Steins, A. Poulesquen, O. Diat, F. Frizon, Langmuir 28 (2012) 8502 (http://dx.doi.org/10.1021/la300868v)

W. M. Kriven, J. L. Bell, M. Gordon, in Mechanical Properties and Performance of Engineering Ceramics II Ceramics Engineering Proceedings, R. Tandon, A. Wereszczak, E. Lara‐Curzio (Eds.), John Wiley & Sons, Hoboken, NJ, 2006, pp. 491–498

S. Y. Hong, F. P. Glasser, Cem. Concr. Res. 32 (2002) 1101 (http://dx.doi.org/10.1016/S0008-8846(02)00753-6)

I. Nikolić, A. Drinčić, D. Djurović, L. Karanović, V. V. Radmilović, V. R. Radmilović, Constr. Build. Mater. 108 (2016) 1 (http://dx.doi.org/10.1016/j.con-buildmat.2016.01.038)

Z. Aly, E. R. Vance, D. S. Perera, J. V Hanna, C. S. Griffith, J. Davis, D. Durce, J. Nucl. Mater. 378 (2008) 172 (http://dx.doi.org/10.1016/j.jnucmat.2008.06.015).

DOI: https://doi.org/10.2298/JSC180328057N

Copyright (c) 2018 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

5 Year Impact Factor 1.023
138 of 177 journals)