Spectral, NLO and antimicrobial studies of Co(II), Ni(II) and Cu(II) complexes of Schiff base ligands of 2-amino-6-nitrobenzothiazole

Chinnaraj Kanagavalli, Murugesan Sankarganesh, Jeyaraj Dhaveethu Raja, Manivannan Kalanithi

Abstract


A novel series of transition metal complexes of Co(II), Ni(II) and Cu(II) were synthesized from the Schiff base ligands (L1 to L4) derived from 2-amino-6-nitrobenzothiazole with various aromatic aldehydes such as 4‑methylbenzaldehyde, 4-ethylbenzaldehyde, 2-hydroxybenzaldehyde and 4‑hydroxybenzaldehyde. The ligands (L1 to L4) and their metal (II) complexes were characterized by AAS, magnetic susceptibility, molar conductance measurements, UV–Vis, FT-IR and NMR spectroscopic techniques. The spectroscopic studies reveal that complexes of L1 to L4coordinate in an octahedral environment and L4 in a square planar / tetrahedral geometry. The L1 to L4 and their metal(II) complexes were screened for their antimicrobial activities against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans. The results suggest that, complexes of L4 possess greater inhibition activity towards Candida albicans. The NLO activity of the ligands L1 to L4 was determined. These obtained results show that, ligands (L1 and L2) are found to have more SHG efficiency than L3 and L4.

Keywords


aldehydes; metal(II) complexes; spectroscopic; AAS; biological activity

Full Text:

PDF (1,328 kB)

References


A. Achson, An introduction to the chemistry of heterocyclic compounds, Willy Intersciences; India; 2009 3rd ed. (https://pubs.acs.org/doi/abs/10.1021/ed038pA430)

E. Yousif, A. Majeed, K. Al-Sammarrae, N. Salih, J. Salimon, B. Abdullah, Arab. J. Chem. 10 (2017), S1639 (https://doi.org/10.1016/j.arabjc.2013.06.006)

S. E. Etaiw, D. A. EI-Aziz, E. A. EI-Zaher, E. Ali, Spectrochim. Acta A, 79(5) (2011) 1331 (https://doi: 10.1016/j.saa.2011.04.064)

H. C. Sakarya, K. Gorgun, C. Ogretir, Arab. J. Chem. 9(2) (2016) S1314 (https://doi.org/10.1016/j.arabjc.2012.02.008)

M. A. Neelakantan, M. Esakkiammal, S. S. Mariappan, J. Dharmaraja, T. Jeyakumar, Indian J. Pharm. Sci. 72(2) (2010) 216 (https://doi:10.4103/0250-474X.65015)

P. Chandersharma, A. Sinhmar, A. Sharma, H. Rajak, D. P. Pathak , J. Enzyme Inhib. Med. Chem. 28 (2013) 240 (https://doi.org/10.3109/14756366.2012.720572)

J. P. Costes, J. F. Lamere, C. Lepetti, P. G. Lacroix, F. Dahan, Inorg. Chem. 44 (2005) 1973 (https://doi.org/10.1021/ic048578n)

N. Raman, L. Mitu, A. Sakthivel, M. S. S. Pandia, J. Iran. Chem. Soc. 6 (2009) 738 (https://doi.org/10.1007/bf03246164)

H. S. Nalwa, T. Watanabe, S. Miyata, in H. S. Nalwa, S. Miyata (Eds.), Nonlinear Opt Org. Mol. Polym. CRC Press, Boca Raton, 89 (1997) (https://www.crcpress.com/Non¬li¬near-Optics-of-Organic-Molecules-and-Polymers/Na¬lwa-Miyata/p/book/9780849389238)

H. S. Nalwa, in H. S. Nalwa, S. Miyata (Eds.), Nonlinear Opt. Org. Mol. Polym. CRC Press, Boca Raton, 611 (1997) (https://www.crcpress.com/Nonlinear-Optics-of-Organic- Molecules-and-Polymers/Nalwa-Miyata/p/book/9780849389238)

P. N. Prasad, D. J. Williams: Introduction to Nonlinear Optical Effects in Molecules and Polymers. N. Y. Wiley, (1991) (https://doi.org/10.1002/pi.4990250317)

S. K. Kurtz, T. T. Perry, J. Appl. Phys. 39 (1968) 3798 (https://doi.org/10.1063/1.1656857)

W. G. Geary, Coord. Chem. Rev 7 (1971) 81(https://doi.org/10.1044/jshd.3601.19)

R. C. Maurya, R. Verma, H. Singh, Synth. React. Inorg. Metal-Org. Chem. 33 (2003) 1063 (https://doi.org/10.1081/sim-120021938)

K. Singh, M. S. Barwa, P. Tyagi, Eur. J. Med. Chem. 41 (2006) 147 (https://doi.org/10.1016/j.ejmech.2005.06.006)

G. G. Mohamed, M. A. Zayed, S. M. Abdallah. J. Mol. Struct. 62 (2010) 979 (https://doi.org/10.1016/j.molstruc.2010.06.002)

L. Xu, M. Hong, Y. Yang, J. Cui, C. Li, J. Coord. Chem. 69 (2016) 2598 (https://doi.org/10.1080/00958972.2016.1217408)

S. Budagumpi, G. S. Kurdekar, V. K. Revankar, J. Coord. Chem. 63 (2010) 1430 (https://doi.org/10.1080/00958970903261317)

M. Gulcan, Y. Karatas, S. Isik, G. Ozturk, E. Akbas, E. Sahin, J. Fluoresc, 24(6) (2014) 1679 (https://doi: 10.1007/s10895-014-1455-3)

C. J. Dhanaraja, M. S. Nair, J. Coord. Chem. 62 (2009) 4018 (https://doi.org/10.1080/00958970903191142)

M. Kalanithi, M. Rajarajan, P. Tharmaraj, C. D. Sheela, J. Coord. Chem. 87 (2012) 155 (https://doi.org/10.1016/j.saa.2011.11.031)

A. B. P. Lever, Inorganic Electronic Spectroscopy, 2nd ed, Elsevier, New York (1968)

P. S. Patil, S. M. Dharmaprakash, K. Ramakrishna, H.-K. Fun, R. S. S. Kumar, D. N. Rao. J. Cryst. Growth. 303 (2007) 520 (https://doi.org/10.1016/j.jcrysgro.2006.12.068)

A. P. Zambre, V. M. Kulkarni, S. Padhye, S. K. Sandur, B. B. Aggarwal. Bioorg. Med. Chem. 14 (2006) 7196 (https://doi.org/10.1016/j.bmc.2006.06.056)

R. Sharma, L. Yadav, J. Lal, P. K. Jaiswal, M. Mathur, A. K. Swami, S. Chaudhary, Bioorg. Med. Chem. Lett. 27(18) (2017) 4393 (https://doi.org/10.1016/j.bmcl.2017.08.017)

S. Alyar, N. Karacan, J. Enzyme Inhib. Med. Chemistry 24(4) (2009) 986 (https://doi.org/10.1080/14756360802561220)

F. N. Ejiah, T. M. Fasina, O. B. Familoni, F. T. Ogunsola, Adv. Biol. Chem. 3 (2013) 475 (http://www.scirp.org/journal/abc/)

L. H. Abdel-Rahman, A. M. Abu-Die, H. Moustafa, A. Hassan Abdel-Mawgoud, Arab. J. Chem. (2017) S1878 (https://doi.org/10.1016/j.arabjc.2017.07.007)

M. N Uddin, D. A Chowdhury, K. Hossain, J. Chinese Chem. Soc. 59 (2012) 1520 (https://doi.org/10.1002/jccs.201200169)

M. N Uddin, D. A Chowdhury, MT Islam, F. Hoque, Orbital Elec. J. Chem. 4 (2012) 273 (https://doi.org/10.3329/uhj.v4i1.1387)

N. Chattopadhyay, A. Mallick, S. Sengupta, Journal of Photochemistry and Photobiology A Chemistry. 177 (2006) 55 (https://doi.org/10.1016/j.jphotochem.2005.05.011)




DOI: https://doi.org/10.2298/JSC180521101K

Copyright (c) 2018 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.797 (139 of 171 journals)
5 Year Impact Factor 0,923 (134 of 171 journals)