Synthesis of sulfonamides bearing 1,3,5-triarylpyrazoline and 4-thiazolidinone moieties as novel antimicrobial agents

Thi-Dan Thach, T. Tuong-Vi Le, H. Thien-An Nguyen, Chi-Hien Dang, Van-Su Dang, Thanh-Danh Nguyen

Abstract


Two series of sulfonamides have been synthesized from 4‑hydrazinylbenzenesulfonamide as the key starting material. 1,3,5-tri­arylpyrazoline sulfonamides (2a-i) were obtained by cyclocondensation of the various chalcones in 53-64 % yields while 4-thiazolidinone derivatives (4a-e) were synthesized by cyclocondensation between mercaptoacetic acid and different phenylhydrazones in 43-62 % yields. The synthesized compounds were characterized on the basis of FTIR, 1H NMR, 13C NMR, and HRMS data. The sulfonamides have been evaluated in vitro antimicrobial activities against four bacterial strains (E. coli, P. aeruginosa, B. subtillis and S aureus), two filamentous fungal strains (A. niger and F. oxysporum) and two yeast strains (C. albicans and S. cerevisiae). Seven pyrazolines 2a-c and 2e-h exhibited significant inhibition of different microbial strains. Among them, compound 2b displayed good antifungal activity against A. niger (MIC value at 12.5 mg mL-1) over the reference drug.


Keywords


synthesis, sulfonamide, pyrazoline, thiazolidinone, antimicrobial agents

Full Text:

PDF (2,961 kB)

References


N. V. Chandrasekharan, H. Dai, K. L. Roos, N. K. Evanson, J. Tomsik, T. S. Elton, D. L. Simmons, Proc. Natl. Acad. Sci. 99 (2002) 13926 (https://doi.org/10.1073/pnas.162468699)

J. Badgujar, D. More, J. Meshram, Mod. Org. Chem. Res. 2 (2017) 33. (https://doi.org/10.22606/mocr.2017.22001)

Y. Genc, R. Ozkanca, Y. Bekdemir, Ann. Clin. Microbiol. Antimicrob. 7 (2008)17. (https://doi.org/10.1186/1476-0711-7-17)

J. R. Badgujar, D. H. More, J. S. Meshram, Indian J. Microbiol. 58 (2018) 93 (https://doi.org/10.1007/s12088-017-0689-6)

M. M. Ghorab, F. A. Ragab, M. M. Hamed, Eur. J. Med. Chem. 44 (2009) 4211 (https://doi.org/10.1016/j.ejmech.2009.05.017)

J. M. Thiede, S. L. Kordus, B. J. Turman, J. A. Buonomo, C. C. Aldrich, Y. Minato, A.D. Baughn, Sci. Rep. 6 (2016) 38083 (https://doi.org/10.1038/srep38083)

S. Petrovic, A. Tacic, S. Savic, V. Nikolic, L. Nikolic, S. Savic, Saudi Pharm.J. 25 (2017)1194. (https://doi.org/10.1016/j.jsps.2017.09.003)

E. Borowska, E. Felis, K. Miksch, J. Adv. Oxid. Technol. 18 (2015) 69. (https://doi.org/10.1515/jaots-2015-0109)

M. T. Madigan, J. M. Martinko, D. A. Stahl, D. P. Clark, Brock Biology of Microorganisms, Pearson Education Inc, California, 2012, p.767.

S. S. Korgaokar, P. H. Patil, M. J. Shah, H. H. Parekh, Ind. J. Pharm. Sci. 58 (1996) 222

D. Nauduri, G.B. Reddy, Chem. Pharm. Bull. 46 (1998) 1254 (https://doi.org/10.1248/cpb.46.1254)

Z. Ozdemir, H. B. Kandilici, B. Gumusel, U. Calis, A. A. Bilgin, Eur. J. Med. Chem. 42 (2007) 373 (https://doi.org/10.1016/j.ejmech.2006.09.006)

K. R. A. Abdellatif, E. K. A. Abdelall, W. A. A. Fadaly, G. M. Kamel, Bioorg. Med. Chem. Lett. 26 (2016) 406 (https://doi.org/10.1016/j.bmcl.2015.11.105)

O. I. El-Sabbagh, M. M. Baraka, S. M. Ibrahim, C. Pannecouque, G. Andrei, R. Snoeck, J. Balzarini, A. A. Rashad, Eur. J. Med. Chem. 44 (2009) 3746 (https://doi.org/10.1016/j.ejmech.2009.03.038)

D. Zampieri, M. G. Mamolo, E. Laurini, G. Scialino, E. Banfi, L. Vio, Bioorg. Med. Chem. 16 (2008) 4516 (https://doi.org/10.1016/j.bmc.2008.02.055)

M. Shaharyar, A. A. Siddiqui, M. A. Ali, D. Sriram, P. Yogeeswari, Bioorg. Med. Chem. Lett. 16 (2006) 3947 (https://doi.org/10.1016/j.bmcl.2006.05.024)

M. S. Karthikeyan, B. S. Holla, N. S. Kumari, Eur. J. Med. Chem. 42 (2007) 30 (https://doi.org/10.1016/j.ejmech.2006.07.011)

B. F. Abdel-Wahab, H. A. Abdel-Aziz, E. M. Ahmed, Eur. J. Med. Chem. 44 (2009) 2632 (https://doi.org/10.1016/j.ejmech.2008.09.029)

A. Deep, P. Kumar, B. Narasimhan, K. Ramasamy, V. Mani, R. K. Mishra, A. B. A. Majeed, Curr. Topic Med. Chem. 15 (2015) 990 (https://doi.org/10.2174/1568026615666150317221849)

S.G. Modha, V.P. Mehta, D. Ermolatev, J. Balzarini, K.V. Hecke, L.V. Meervelt, E.V. Eycken, Mol. Divers. 14 (2010) 767 (https://doi.org/10.1007/s11030-009-9221-1)

A. Verma, S.K. Saraf, Eur. J. Med. Chem. 43 (2008) 897 (https://doi.org/10.1016/j.ejmech.2007.07.017)

S. Senkardes, S. G. G. Kucukguzel, Mini. Rev. Org. Chem. 13 (2016) 377. (https://doi.org/10.2174/1570193X13666160826154159)

T. K. D. Hoang, T. K. C. Huynh, T. D. Nguyen, Bioorg. Chem. 63 (2015) 45 (https://doi.org/10.1016/j.bioorg.2015.09.005)

T. D. Nguyen, V. S. Dang, V. H. Nguyen, T. M. T. Nguyen, C. H. Dang. Polycycl. Aromat. Compd. 38 (2018) 42. (https://doi.org/10.1080/10406638.2016.1143848)

T. K. D. Hoang, T. K. C. Huynh, T. H. T. Do, T. D. Nguyen, Chem. Pap. 72 (2018) 1399 (https://doi.org/10.1007/s11696-018-0402-1)

P. F. Wang, H. Y. Qiu, S. K. Baloch, H. B. Gong, Z. C. Wang, H. L. Zhu, Chem. Biol. Drug Des. 86 (2015) 1405 (https://doi.org/10.2174/1570180812666150722235902)

O. Unsal-Tan, K. Ozadali, K. Piskin, A. Balkan, Eur. J. Med. Chem. 57 (2012) 59. (https://doi.org/10.1016/j.ejmech.2012.08.046)

T. N. T. Nguyen, T. N. N. Huynh, V. T. Tran, C. H. Dang, T. K. D. Hoang, T. D. Nguyen, J. Essent. Oil Res. 30 (2018) 285 (https://doi.org/10.1080/10412905.2018.1435428)




DOI: https://doi.org/10.2298/10.2298/JSC180621057T

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)