Oxidative ammonolysis of 3,4-dimethylpyridine on the vanadium oxide catalysts
Main Article Content
Abstract
Oxidative ammonolysis of 3,4-dimethylpyridine on an individual vanadium oxide (V2O5) catalyst and binary vanadium oxide catalysts, modified by additions of SnO2 and ZrO2, has been studied. A connection between СН-acidity of the methyl groups of the substrate in the gaseous phase and in the chemosorbed state and the sequence of their transformation into a cyano group has been established. It has been shown that nucleophilicity of vanadyl oxygen, calculated by the Density Functional Theory method, increases with V2O5 modification by SnO2 and ZrO2 additions. Herewith, an increasing yield of 3-methyl-4-cyanopyridine and imide of pyridine-3,4-dicarboxylic acid was observed. A proposed mechanism of the imide of pyridine-3,4-dicarboxylic acid formation has been discussed
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
Т. Delaine, V. Bernandes-Genisson, A. Quemard, P. Constant, B. Meunier, J. Bernadou, Eur. J. Med. Chem. 45 (2010) 4554 (https://doi.org/10.1016/j.ejmech.2010.07.016)
T. R. K. Reddy, R. Mutter, W. Heal, K. Guo, V.J. Gillet, S. Pratt, B. Chen, J. Med. Chem. 49 (2006) 607 (https://doi.org/10.1021/jm050610f)
E. E. Ergozhin, B. A. Mukhitdinova, V. V. Shaligina, B. Zh. Shekeeva, K. M. Sartbaeva, React. Funct. Polym. 65 (2005) 93 (https://doi.org/10.1016/j.reactfunctpolym.2004.12.003)
B. V. Suvorov, Oxidative Ammonolysis of Organic Compounds, Nauka, Alma-Ata, 1971, p. 210
R. Chuck, Appl. Catal., A 280 (2005) 75 (https://doi.org/10.1016/j.apcata.2004.08.029)
P. B. Vorobev, D. Kh. Sembaev, Russ. J. Gen. Chem. 75 (2005) 147 (https://doi.org/10.1007/s11176-005-0186-1)
D. Kh. Sembaev, O. K. Yugay, S. G. Klepikova, Eurasian Chem.-Tech. J. 6 (2004) 127 (https://doi.org/10.18321/ectj601)
J. Okada, S. Morita, Y. Miwa, T. Tashima, Yakugaku Zasshi 98 (1978) 1391
J. Okada, S. Morita, Y. Miwa, Chem. Pharm. Bull. 22 (1974) 2402 (https://doi.org/10.1248/cpb.22.2402)
P. Vorobyev, T. Mikhailovskaya, O. Yugay, A. Serebryanskaya, N. Chukhno, R. Kurmakizy, J. Serb.Chem.Soc. 82 (2017) 791 (http://doi.org/10.2298/JSC161220023Z)
W. Koсh, M. C. Holthausen, Chemists Guide to Density Functional Theory. 2nd ed., Wiley-VCH, Weinheim, 2001, p. 293
J. B. Foresman, A. Frish, Exploring Chemistry with Electronic Structures Methods, 2nd ed., Gaussian Inc., Pittsburgh, PA, 1996, p. 335
Gaussian09, Revision D.01., Gaussian Inc., Wallingford, CT, 2009
D. J. Cram, Fundamentals of Carbanion Chemistry, Academic Press, New York, 1965, p. 290
K. Higasi, H. Baba, A. Rembaum, Quantum organic chemistry. Interscience Publishers, Division of John Wiley & Sons, Inc., New York, 1965, p. 380
L. Ya. Margolis, V. N. Korchak, Russ. Chem. Rev. 67 (1998) 1073 (https://doi.org/10.1070/RC1998v067n12ABEH000428)
N. I. Chukhno, I. S. Kolodina, D. Kh. Sembaev, Izv. Akad. Nauk KazSSR. Ser.Chim. 4 (1989) 31.