Oxidative ammonolysis of 3,4-dimethylpyridine on the vanadium oxide catalysts

Pavel Vorobyev, Anna Serebryanskaya, Olga Yugay, Tatyana Mikhailovskaya

Abstract


Oxidative ammonolysis of 3,4-dimethylpyridine on an individual vanadium oxide (V2O5) catalyst and binary vanadium oxide catalysts, modified by additions of SnO2 and ZrO2, has been studied. A connection between СН-acidity of the methyl groups of substrate in the gaseous phase and in the chemosorbed state and the sequence of their transformation into a cyano group has been established. It has been shown that nucleophilicity of vanadyl oxygen, calculated by the Density Functional Theory method, increases with V2O5 modification by SnO2 and ZrO2 additions. Herewith, an increasing of the yield of 3-methyl-4-cyanopyridine and imide of pyridine-3,4-dicarboxylic acid is observed. A proposed mechanism of the imide of pyridine-3,4-dicarboxylic acid formation has been considered.


Keywords


Quantum-Chemical Method; imide of pyridine-3,4-dicarboxylic acid; mechanism; V2O5; SnO2; ZrO2

Full Text:

PDF (1,303 kB)

References


Т. Delaine, V. Bernandes-Genisson, A. Quemard, P. Constant, B. Meunier, J. Bernadou, Eur. J. Med. Chem. 45 (2010) 4554 (https://doi.org/10.1016/j.ejmech.2010.07.016)

T.R.K. Reddy, R. Mutter, W. Heal, K. Guo, V.J. Gillet, S. Pratt, B. Chen J. Med. Chem. 49 (2006) 607 (https://doi.org/10.1021/jm050610f)

E.E. Ergozhin, B.A. Mukhitdinova, V.V. Shaligina, B.Zh. Shekeeva, K.M. Sartbaeva, React. Funct. Polym. 65 (2005) 93 (https://doi.org/10.1016/j.reactfunctpolym.2004.12.003)

B. V. Suvorov, Oxidative Ammonolysis of Organic Compounds, Nauka, Alma-Ata, 1971, p. 210

R. Chuck, Appl. Catal. A:General. 280 (2005) 75 (https://doi.org/10.1016/j.apcata.2004.08.029)

P. B. Vorob’ev, D. Kh. Sembaev, Russ. J. Gen. Chem. 75 (2005) 147 (https://doi.org/10.1007/s11176-005-0186-1)

D. Kh. Sembaev, O. K. Yugay, S. G. Klepikova, Eurasian Chem.-Tech. J. 6 (2004) 127 (https://doi.org/10.18321/ectj601)

J. Okada, S. Morita, Y. Miwa, T. Tashima, Yakugaku Zasshi. 98 (1978) 1391

J. Okada, S. Morita, Y. Miwa, Chem. Pharm. Bull. 22 (1974) 2402 (https://doi.org/10.1248/cpb.22.2402)

P. Vorobyev, T. Mikhailovskaya, O. Yugay, A. Serebryanskaya, N. Chukhno, R. Kurmakizy, J. Serb.Chem.Soc. 82 (2017) 791 (http://doi.org/10.2298/JSC161220023Z)

W. Koсh, M. C. Holthausen, Chemist’s Guide to Density Functional Theory. 2nd ed., Wiley-VCH., Weinheim, 2001, p. 293

J. B. Foresman, A. Frish, Exploring Chemistry with Electronic Structures Methods, 2nd ed., Gaussian Inc., Pittsburgh, PA, 1996, p. 335

M. J. Frish, G.W. Truck, H.B. Schlegel et.al. Gaussian09, Revision D.01., Gaussian Inc., Wallingford CT, 2009

D. J. Cram, Fundamentals of Carbanion Chemistry, Academic Press, New York–London, 1965, p. 290

K. Higasi, H. Baba, A. Rembaum, Quantum organic chemistry. Interscience Publishers, Division of John Wiley & Sons, Inc., New York–London–Sydney, 1965, p. 380

L. Ya. Margolis, V. N. Korchak, Russ. Chem. Rev., 67 (1998) 1073 (https://doi.org/10.1070/RC1998v067n12ABEH000428)

N. I. Chukhno, I. S. Kolodina, D. Kh. Sembaev, Izv. Akad. Nauk KazSSR. Ser.Chim. 4 (1989) 31 (In Russian)




Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)