Application of spectral graph theory on the enthalpy of formation of acyclic saturated ketones

Ana Gligorijević, Svetlana Marković, Izudin Redžepović, Boris Furtula

Abstract


Dependence of the enthalpy of formation of acyclic saturated ketones on molecular structure (the number of carbon atoms, the position of the carbonyl group, and branching of molecules) was investigated. For this purpose, a simple computational model, whose parameterization is based on spectral graph theory, was developed. It was found that the major part of the enthalpy of formation is determined with molecular size, whereas the fine structure of the enthalpy of formation is determined with the branching of molecule and position of the carbonyl group. The developed model turned out to be very useful for such investigations. On one hand, the model is simple and practical. On the other hand, the agreement between the experimental and calculated enthalpies of formation is very good, with the average relative error of 0.7 %.


Keywords


modified adjacency matrix; spectral moments; parameterization; 8-parametric approximative formula; molecular structure

Full Text:

PDF (1,790 kB)

References


M. Randić, M. Novič, D. Plavšić, Solved and unsolved problems of structural chemistry, CRC Press, Boca Raton, USA, 2016 (https://www.crcpress.com/Solved-and-Unsolved-Problems-of-Structural-Chemistry/Randic-Novic-Plavsic/p/book/9781498711517)

J. K. Burdett, S. Lee, J. Am. Chem. Soc. 107 (1985) 3050 (https://doi.org/10.1021/ja00297a010)

J. K. Burdett, S. Lee, J. Am. Chem. Soc. 107 (1985) 3063 (https://doi.org/10.1021/ja00297a011)

S. Lee, Acc. Chem. Res. 24 (1991) 249 (https://doi.org/10.1021/ar00008a005)

G. G. Hall, Proc. R. Soc. London 229 (1955) 251 (https://doi.org/10.1098/rspa.1955.0085)

R. A. Marcus, J. Chem. Phys. 43 (1965) 2643 (https://doi.org/10.1063/1.1697189)

Y. Jiang, A. Tang, R. Hoffmann, Theor. Chim. Acta 66 (1984) 183 (https://doi.org/10.1007/BF00549668)

L. Türker, MATCH Commun. Math. Chem. 16 (1984) 83 (http://match.pmf.kg.ac.rs/electronic_versions/Match16/match16_83-94.pdf)

J. Cioslowski, Z. Naturforsch. 40a (1985) 1167 (https://doi.org/10.1515/zna-1985-111)

Y. S. Kiang, A. C. A. Tang, Int. J. Quantum Chem. 29 (1986) 229 (https://doi.org/10.1002/qua.560290213)

J. Cioslowski, MATCH Commun. Math. Chem. 20 (1986) 95 (http://match.pmf.kg.ac.rs/electronic_versions/Match20/match20_95-101.pdf)

G. G. Hall, Theor. Chim. Acta 70 (1986) 323 (https://doi.org/10.1007/BF00540026)

J. R. Dias, J. Mol. Struct. (Theochem) 149 (1987) 213 (https://doi.org/10.1016/0166-1280(87)87023-9)

J. R. Dias, Can. J. Chem. 65 (1987) 734 (https://doi.org/10.1139/v87-124)

Y. Jiang, H. Zhang, Theor. Chim. Acta 75 (1989) 279 (https://doi.org/10.1007/BF00533194)

Y. Jiang, H. Zhang, Pure Appl. Chem. 62 (1990) 451 (https://doi.org/10.1351/pac199062030451)

I. Gutman, G. G. Hall, S. Marković, Z. Stanković, V. Radivojević, Polyc. Arom. Comp. 2 (1991) 275 (https://doi.org/10.1080/10406639208048429)

D. Babić, A. Graovac, I. Gutman, Theor. Chim. Acta 79 (1991) 403 (https://doi.org/10.1007/BF01112567)

S. Marković, I. Gutman, J. Mol. Struct. (Theochem) 235 (1991) 81 (https://doi.org/10.1016/0166-1280(91)85087-N)

S. Marković, Theor. Chim. Acta 81 (1992) 237 (https://doi.org/10.1007/BF01118564)

I. Gutman, Theor. Chim. Acta 83 (1992) 313 (https://doi.org/10.1007/BF01113057)

Y. Jiang, X. Qian, Y. Shao, Theor. Chim. Acta 90 (1995) 135 (https://doi.org/10.1007/BF01113844)

I. Gutman, V. R. Rosenfeld, Theor. Chim. Acta 93 (1996) 191 (https://doi.org/10.1007/BF01113352)

S. Marković, A. Stajković, Theor. Chim. Acta 96 (1997) 256 (https://doi.org/10.1007/s002140050228)

I. Gutman, S. Marković, A. Vesović, E. Estrada, J. Serb. Chem. Soc. 63 (1998) 639 (https://www.shd.org.rs/JSCS/Start.html)

S. Marković, J. Chem. Inf. Comput. Sci. 39 (1999) 654 (https://doi.org/10.1021/ci9801116)

S. Marković, Z. Marković, R. I. McCrindle, J. Chem. Inf. Comput. Sci. 41 (2001) 112 (https://doi.org/10.1021/ci000013w)

S. Marković, Z. Marković, J. P. Engelbrecht, R. I. McCrindle, J. Chem. Inf. Comput. Sci. 42 (2002) 82 (https://doi.org/10.1021/ci0100604)

S. Marković, Indian J. Chem. 42A (2003) 1304 (http://nopr.niscair.res.in/bitstream/123456789/20661/1/IJCA%2042A%286%29%201304-1308.pdf)

U. Debnath, S. B. Katti, Y. S. Prabhakar, Curr. Comput. Aided Drug Design 9 (2013) 472 (https://doi.org/10.2174/15734099113096660047)

M. Mahani, S. Sheikhghomi, H. Sheikhghomi, J. Fasihi, J. Struct. Chem. 58 (2017) 344 (https://doi.org/10.1134/S0022476617020159)

E. Estrada, Bioinformatics 18 (2002) 697 (https://doi.org/10.1093/bioinformatics/18.5.697)

E. Estrada, Proteins: Struct. Function Bioinf. 54 (2004) 727 (https://doi.org/10.1002/prot.10609)

R. Nasiri, H. R. Ellahi, A. Gholami, G. H. Fath-Tabar, A. R. Ashrafi, MATCH Commun. Math. Comput. Chem. 77 (2017) 157 (http://match.pmf.kg.ac.rs/electronic_versions/Match77/n1/match77n1_157-176.pdf)

G. P. Clemente, A. Cornaro, MATCH Commun. Math. Comput. Chem. 77 (2017) 673 (http://match.pmf.kg.ac.rs/electronic_versions/Match77/n3/match77n3_673-690.pdf)

B. Li, MATCH Commun. Math. Comput. Chem. 77 (2017) 701 (http://match.pmf.kg.ac.rs/electronic_versions/Match77/n3/match77n3_701-706.pdf)

G. Lekishvili, MATCH Commun. Math. Comput. Chem. 75 (2016) 355 (http://match.pmf.kg.ac.rs/electronic_versions/Match75/n2/match75n2_355-363.pdf)

D. W. Rogers, F. J. McLafferty, A. V. Podosenin, J. Org. Chem. 63 (1998) (https://doi.org/10.1021/jo980820i)

L. R. Schmitz, I. Motoc, C. Bender, J. K. Labanowski, N. L. Allinger, J. Phys. Org. Chem. 5 (1992) 225 (https://doi.org/10.1002/poc.610050502)

C. H. Langley, J. Lii, N. L. Allinger, J. Comput. Chem. 22 (2001) 1476 (https://doi.org/10.1002/jcc.1101)

S. Marković, A. Despotović, D. Jovanović, I. Đurović, Russ. J. Phys. Chem. 83 (2009) 1430 (https://doi.org/10.1134/S0036024409090027)

J. D. Cox, G. Pilcher, Thermochemistry of organic and organometallic compounds, Acad. Press, London, UK, 1970 (https://doi.org/10.1002/bbpc.19700740727)

J. D. Pedley, R. D. Naylor, S. P. Kirby, Thermochemical data of organic compounds, Chapman and Hall, London, UK, 1986 (https://doi.org/10.1007/978-94-009-4099-4)

W. J. Hehre, A. J. Shusterman, J. E. Nelson, The molecular modeling workbook for organic chemistry, Wavefunction, Irvine, USA, 1998 (https://doi.org/10.1021/ed076p1193).




DOI: https://doi.org/10.2298/JSC180906086G

Copyright (c) 2018 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.797 (139 of 171 journals)
5 Year Impact Factor 0,923 (134 of 171 journals)