A thermodynamic approach for correlating the solubility of drug compounds in supercritical CO2 based on Peng-Robinson and Soave-Redlich-Kwong equations of states coupled with van der Waals mixing rules

Narjes Setoodeh, Parviz Darvishi, Abolhasan Ameri


In the present study, an effect of equations of state and mixing rules in a thermodynamic approach has been investigated for correlation of solubility of four new solid pharmaceutical compounds, namely, benzamide, cetirizine, meta­xalone and niflumic acid in supercritical CO2 at different temperatures and pressures. Two equations of state of Peng-Robinson (PR) and Soave-Redlich-Kwong (SRK) coupled with mixing rules of one-parameter van der Waals (vdW1) and two-parameter van der Waals (vdW2) have been used, where the binary interaction parameters for these sets of equations were evaluated. The approach correlations and the robustness of the numerical technique were vali­da­ted with the experimental data previously reported for these compounds at dif­fe­rent temperatures and pressures. The calculated average absolute relative devia­tions (AARD) were 7.51 % and 5.31 % for PR/vdW1 and PR/vdW2 coup­les and 11.05 % and 10.24 % for SRK/vdW1 and SRK/vdW2 couples, respect­tively. It is also found that PR equation of state results in modeling performance better than SRK and vdW2 mixing rule better than vdW1. These results obvious­ly demon­strate that the combined approach used in this study is applicable for correlation of solid solubilities of some pharmaceutical compounds in super­critical CO2. Besides, a semi-empirical correlation is proposed for estimating the solubility of drug solids in supercritical CO2 as a function of pressure and temperature.


solid pharmaceutical compounds; SRK; PR; equations of state; mixing rules

Full Text:

PDF (1,874 kB)


M. Mukhopadhyay, Natural extracts using supercritical carbon dioxide, CRC press, Florida, United States, 2000, p. 4

J. D. Hubbard, J. M. Downing, M. S. Ram, O. K. Chung, Cereal Chem. 81 (2004) 693 (https://doi.org/10.1094/CCHEM.2004.81.6.693)

R. L. Mendes, A. D. Reis, A. F. Palavra, Food Chem. 99 (2006) 57 (https://doi.org/10.1016/j.foodchem.2005.07.019)

M. F. Mendes, F. L. P. Pessoa, A. M. C. Uller, J. Supercrit. Fluids 23 (2002) 257 (https://doi.org/10.1016/S0896-8446(01)00140-1)

R. Bruni, A. Guerrini, S. Scalia, C. Romagnoli, G. Sacchetti, Phytochem. Anal. 13 (2002) 257 (https://doi.org/10.1002/pca.651)

S. Santoyo, R. Lloria, L. Jaime, E. Ibanez, F. J. Senorans, G. Reglero, Eur. Food Res. Technol. 222 (2006) 565 (https://doi.org/10.1007/s00217-005-0027-9)

M. C. Dı́az-Maroto, M. S. Perez-Coello, M. D. Cabezudo, J. Chromatogr. A 947 (2002) 23 (https://doi.org/10.1016/S0021-9673(01)01585-0)

A. Chafer, T. Fornari, A. Berna, R. P. Stateva, J. Supercrit. Fluids 32 (2004) 89 (https://doi.org/10.1016/j.supflu.2004.02.005)

A. Z. Hezave, M. H. Khademi, F. Esmaeilzadeh, Fluid Phase Equilib. 313 (2012) 140 (https://doi.org/10.1016/j.fluid.2011.09.031)

A. Z. Hezave, S. Aftab, F. Esmaeilzadeh, J. Supercrit. Fluids 68 (2012) 39 (https://doi.org/10.1016/j.supflu.2012.04.006)

A. Z. Hezave, S. Shahnazar, H. Rajaei, M. Lashkarbolooki, F. Esmaeilzadeh, Fluid Phase Equilib. 355 (2013) 130 (https://doi.org/10.1016/j.fluid.2013.07.003)

C.-Y. Huang, L.-S. Lee, C.-S. Su, J. Taiwan Inst. Chem. Eng. 44 (2013) 349 (https://doi.org/10.1016/j.jtice.2012.12.004)

F. Edi-Soetaredjo, S. Ismadji, Y.-H. Ju, Fluid Phase Equilib. 340 (2013) 7 (https://doi.org/10.1016/j.fluid.2012.12.005)

S. A. Shojaee, H. Rajaei, A. Z. Hezave, M. Lashkarbolooki, F. Esmaeilzadeh, J. Supercrit. Fluids 81 (2013) 42 (https://doi.org/10.1016/j.supflu.2013.04.013)

J. Sakabe, H. Uchida, Y. Shimoyama, J. Supercrit. Fluids 100 (2015) 26 (https://doi.org/10.1016/j.supflu.2015.02.002)

J. Sakabe, H. Uchida, Y. Shimoyama, Chem. Eng. Res. Des. 92 (2014) 2970 (https://doi.org/10.1016/j.cherd.2014.08.003)

J.-l. Li, J.-s. Jin, Z.-t. Zhang, Y.-b. Wang, Fluid Phase Equilib. 307 (2011) 11 (https://doi.org/10.1016/j.fluid.2011.04.021)

A. Z. Hezave, A. Mowla, F. Esmaeilzadeh, J. Supercrit. Fluids 58 (2011) 198 (https://doi.org/10.1016/j.supflu.2011.05.017)

C.-A. Lee, M. Tang, S.-L. Ho, Y.-P. Chen, J. Supercrit. Fluids 85 (2014) 11 (https://doi.org/10.1016/j.supflu.2013.10.006)

C.-C. Tsai, H.-m. Lin, M.-J. Lee, J. Supercrit. Fluids 95 (2014) 17 (https://doi.org/10.1016/j.supflu.2014.07.026)

G. Soave, Chem. Eng. Sci. 27 (1972) 1197 (https://doi.org/10.1016/0009-2509(72)80096-4)

D.-Y. Peng, D. B. Robinson, Ind. Eng. Chem. Fundam. 15 (1976) 59 (https://doi.org/10.1021/i160057a011)

R. C. Reid, J. M. Prausnitz, B. E. Poling, The properties of gases and liquids, McGraw Hill Book Co., New York, United States, 1987, p. A.5

R. Storn, K. Price, J. Global Optim. 11 (1997) 341 (https://doi.org/10.1023/A:1008202821328)

D. L. Sparks, R. Hernandez, L. A. Estévez, Chem. Eng. Sci. 63 (2008) 4292 (https://doi.org/10.1016/j.ces.2008.05.031)

S. Betancur, J. C. Carmona, N. N. Nassar, C. A. Franco, F. B. Cortés, Ind. Eng. Chem. Res. 55 (2016) 6122 (https://doi.org/10.1021/acs.iecr.6b01187)

DOI: https://doi.org/10.2298/JSC181105043S

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)