Synthesis, characterization, thermal, theoretical and antimicrobial studies of Schiff base ligand and its Co(II) and Cu(II) complexes
Main Article Content
Abstract
A Schiff base ligand L was synthesized by condensation of 1,2-diaminoethane with creatinine. The reaction of the ligand with metal chloride salt gives Co(II) and Cu(II) complexes. The synthesized ligand and its metal complexes were characterized by elemental analysis, FT-IR, NMR, UV–Vis, conductivity and magnetic susceptibility measurements as well as thermal analyses. Based on spectral data, tetrahedral geometries have been proposed for the Co(II) and Cu(II) complexes. The molar conductivity data show that the complexes are non-electrolytic in nature. In DFT studies, the geometry of the Schiff base ligand and its Co(II) and Cu(II) complexes were fully optimized using the B3LYP functional together with 6-31g(d,p) and LANL2DZ basis sets. The ligand and its metal complexes were tested against four bacterial species and two fungal species. The results revealed that the metal complexes are more potent against the microbes than the parent ligand.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
L. Thunus, R. Lejeune, Coord. Chem. Rev. 184 (1999) 125 (https://doi.org/10.1016/S0010-8545(98)00206-9)
S. J. Coles, M. B. Hursthouse, D. G. Kelly, A. J. Toner, N. M. Walker, Dalton Trans. (1998) 3489 (https://doi.org/10.1039/A805764H)
A. K. Sharma, S. Chandra, Spectrochim. Acta, A 78 (2011) 337 (https://doi.org10.1016/j.saa.2010.10.017)
C. A. McAuliffe, R. V. Parish, S. M. Abu-El-Wafa, R. M. Issa, Inorg. Chim. Acta 115 (1986) 91 (https://doi.org/10.1016/S0020-1693(00)87702-6)
S. Zolezzi, E. Spodine, A. Decinti, Polyhedron 21 (2002) 55 (https://doi.org/10.1016/S0277-5387(01)00960-3)
V. Ambike, S. Adsule, F. Ahmed, Z. Wang, Z. Afrasiabi, E. Sinn, F. Sarkar, S. Padhye, J. Inorg. Biochem. 101 (2007) 1517 (https://doi.org/10.1016/j.jinorgbio.2007.06.028)
T. W. Hambley, L. F. Lindoy, J. R. Reimers, P. Turner, W. Wei, A. N. W. Cooper, Dalton Trans. (2001) 614 (https://doi.org/10.1039/B008789K)
S. Chandra, L. K. Cupta, Transition Met. Chem. 30 (2005) 630 (https://doi.org/10.1007/s11243-005-4826-4)
G. Y. Nagesh, K. M. Raj, B. H. M. Mruthyunjayaswamy, J. Mol. Struct. 1079 (2015) 423 (https://doi.org/10.1016/j.molstruc.2014.09.013)
M. Salehi, A. Amoozadeh, A. Salamatmanesh, M. Kubicki, G. Dutkiewicz , S. Samiee, J. Mol. Struct. 1091 (2015) 81 (https://doi.org/10.1016/j.molstruc.2015.02.060)
S. Shukla, R. S. Srivastava, S. K. Shrivastava, A. Sodhi, P. Kumar, Med. Chem. Res. 22 (2013) 1604 (https://doi.org/10.1007/s00044-012-0150-7)
M. F. Zaltariov, M. Cazacu, M. Avadanei, S. Shova, M. Balan, N. Vornicu., V. C. Varganici, Polyhedron 100 (2015) 121 (https://doi.org/10.1016/j.poly.2015.07.030)
E. M. Zayed, M. A. Zayed, Spectrochim. Acta, A 143 (2015) 81(https://doi.org/10.1016/j.saa.2015.02.024)
T. Rosu, E. Pahontu, C. Maxim, R. Georgescu, N. Stanica, G. L. Almajan, A. Gulea, Polyhedron 29 (2010) 757 (https://doi.org/10.1016/j.poly.2009.10.017)
J. Rahchamani, M. Behzad, A. Bezaatpour, V. Jahed, G. Dutkiewicz, M. Kubicki, M. Salehi, Polyhedron 30 (2011) 2611 (https://doi.org/10.1016/j.poly.2011.07.011)
T. Castano, A. Encinas, C. Perez, A. Castro, N. E. Campille, C. Gil, Bioorg. Med. Chem. 16 (2008) 6193 (https://doi.org/10.1016/j.bmc.2008.04.036)
R. G. Bogle, G. S. Whitley, S. C. Soo, A. P. Johnstone, P. Vallance, Br. J. Pharmacol. 111 (1994) 1257 (https://doi.org/10.1111/j.1476-5381.1994.tb14881.x)
C. Lee, W. Yang, R. G. Parr, Phys. Rev., B 37 (1998) 785 (https://doi.org/10.1103/PhysRevB.37.785)
A. D. Becke, J. Chem. Phys. 98 (1993) 5648 (https://doi.org/10.1063/1.464913)
A. Frisch, A. B. Nielsen, A. J. Holder, Gauss View User Manual, Gaussian Inc., Pittsburg, PA, 2001 (https://www.cwu.edu/chemistry/sites/cts.cwu.edu.chemistry/files/documents/Gaussian_09_ReferenceManual.pdf)
R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 54 (1971) 724 (https://doi.org/10.1063/1.1674902)
Gaussian 09, Revision A. 02,Gaussian, Inc., Wallingford, CT, 2016 (http://wild.life.nctu.edu.tw/~jsyu/compchem/g09/g09ur/m_citation.htm)
R. Dennington II, T. Keith, J. Millam, GaussView, Version 4.1.2, Semichem Inc., Shawnee Mission, KS, 2007 (https://aae.wisc.edu/aae637/gauss_9_light/UserGuide9.0.pdf)
M. A. Ansari, M. K. Haris, A. K. Aijaz, S. Asfia, Biol. Med. 3 (2011) 141 (https://www.sid.ir/En/Journal/ViewPaper.aspx?ID=398130)
M. Mishra, K. Tiwari, P. Mourya, M. M. Singh, V. P. Singh, Polyhedron.89 (2015) 29 (https://doi.org/10.1016/j.poly.2015.01.003)
G. Y. Nagesh, B. H. M. Mruthyunjayaswamy, J. Mol. Struct.1085 (2015) 198 (https://doi.org/10.1016/j.molstruc.2014.12.058)
S. Gurunath, M. P. Sathisha, V. Naveen, B. Srinivasa, K. Vidyanand, Med. Chem. Res. 20 (2011) 421 (https://doi.org/10.1007/s00044-010-9330-5)
A. B. P. Lever, Inorganic Electronic Spectroscopy, 2nd ed., Elsevier Sci., Amsterdam, 1984 (http://garfield.library.upenn.edu/classics1992/A1992JQ35000002.pdf)
K. Rajendra, A. P. Mishra, J. Saudi Chem. Soc.20 (2016) 12 (https://doi.org/10.1016/j.jscs.2012.06.002)
M. Gaber, A. M. Hassanein, A. A. Lotfalla, J. Mol. Struct. 875 (2008) 322 (https://doi.org/10.1016/j.molstrcu.2007.05.009)
F. A. Cotton, C. Wilkinson, C. A. Murillo, M. Bochmann, Advanced Inorganic Chemistry, 6th ed., Wiley, New York, 1999 (ISBN 0-471-19957-5)
M. A. Neelkandan, F. Rusalraj, J. Dharmaraja, S. Johnsonraja, T. Jeyakumar, M. Sankaranarayan Pillai, Spectrochim. Acta, A 71 (2008) 1599 (https://doi.org/10.1016/j.saa.2008.06.008)
A. M. Gouda, H. A. El-Ghamry, T. M. Bawazeer, T. A. Farghaly, A. N. Abdalla, A. Aslam, Eur. J. Med. Chem. 145 (2018) 350 (https://doi.org/10.1016/j.ejmech.2018.01.009)
A. A. Abdel Aziz, A. Shawky, M. H. Khalil, Appl. Organomet. Chem. 32 (2018) 4404 (https://doi.org/10.1002/aoc.4404)
T. Koopmans, Physica 1 (1934) 104 (https://doi.org/10.1016/S0031-8914(34)90011-2)
M. Rocha, A. Di Santo, J. M. Arias, D. M. Gil, A. Ben Altabef, Spectrochim. Acta, A 136 (2015) 635 (https://doi.org/10.1016/j.saa.2014.09.077)
K. R. S. Gowda, H. S. B. Naik, B. V. Kumar, C. N. Sudhamani, H. V. Sudeep, T. R. R. Naik, G. Krishnamurthy, Spectrochim. Acta, A 105 (2013) 229 (https://doi.org/10.1016/j.saa.2012.12.011)
L. P. Nitha, R. Aswathy, N. E. Mathews, B. S. Kumari, K. Mohanan, Spectrochim. Acta, A 118 (2014) 154 (https://doi.org/10.1016/j.saa.2013.08.075)
K. Mohanan, S. N. Devi, B. Murukan, Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 36 (2006) 441 (https://doi.org/10.1080/15533170600777788)
T. Arun, S. Packianathan, M. Malarvizhi, R. Antony, N. Raman, J. Photochem. Photobiol., B 149 (2015) 93 (https://doi.org/10.1016/j.jphotobiol.2015.05.022)
R. Senthil Kumar, S. Arunachalam, Polyhedron 26 (2007) 3255 (https://doi.org/10.1016/j.poly.2007.03.001).