Synthesis, characterization, thermal, theoretical and antimicrobial studies of Schiff base ligand and its Co(II) and Cu(II) complexes

Radha Venkittapuram Palaniswamy, Mahalakshmi Dhandapani, Jonekirubavathy Suyambulingam, Chitra Subramanian

Abstract


A Schiff base ligand L have been synthesized by condensation of 1,2‑diaminoethane with creatinine. The reaction of the ligand with metal chloride salt gives Co(II) and Cu(II) complexes. The synthesized ligand and its metal complexes were characterized by elemental analysis, FT-IR, NMR, UV-Visible, conductivity and magnetic susceptibility measurements as well as thermal analyses. Based on spectral data a tetrahedral geometry have been proposed for Co(II) and Cu(II) complexes. The molar conductivity data shows that the complexes are non-electrolytic in nature. In DFT studies the geometry of the Schiff base ligand and its Co(II) and Cu(II) complexes were fully optimized using B3LYP functional together with 6-31g(d,p) and LANL2DZ basis sets. The ligand and its metal complexes were tested against four bacterial species and two fungal species. The results revealed that the metal complexes are more potent against the microbes than the parent ligand.


Keywords


Schiff base; Co(II), Cu(II); DFT; biological

Full Text:

PDF (1,702 kB)

References


L. Thunus, R. Lejeune, Coord. Chem. Rev. 184 (1999) 125 (https://doi.org/10.1016/S0010-8545(98)00206-9)

S. J. Coles, M. B. Hursthouse, D. G. Kelly, A.J. Toner, N.M. Walker, Dalton Trans. (1998) 3489 (https://doi.org/10.1039/A805764H )

A. K. Sharma, S. Chandra, Spectrochim. Acta Part A Mol. Biomol. Spectrosc.78 (2011) 337 (https://doi.org10.1016/j.saa.2010.10.017)

C. A. McAuliffe, R. V. Parish, S. M. Abu-El-Wafa, R. M. Issa, Inorg. Chim. Acta 115 (1986) 91 (https://doi.org/10.1016/S0020-1693(00)87702-6)

S. Zolezzi, E. Spodine, A. Decinti, Polyhedron 21 (2002) 55 (https://doi.org/10.1016/S0277-5387(01)00960-3)

V. Ambike, S. Adsule, F. Ahmed, Z. Wang, Z. Afrasiabi, E. Sinn, F. Sarkar, S. Padhye, J. Inorg. Biochem. 101 (2007) 1517 (https://doi.org/10.1016/j.jinorgbio.2007.06.028)

T. W. Hambley, L. F. Lindoy, J. R. Reimers, P. Turner, W. Wei, A. N. W. Cooper, Dalton Trans. (2001) 614 (https://doi.org/10.1039/B008789K)

S. Chandra, L. K. Cupta, Trans. Met. Chem. 30 (2005) 630 (https://doi.org/10.1007/s11243-005-4826-4)

G. Y. Nagesh, K. M. Raj, B. H. M. Mruthyunjayaswamy, J. Mol. Struct. 1079 (2015) 423 (https://doi.org/10.1016/j.molstruc.2014.09.013)

M. Salehi, A. Amoozadeh, A. Salamatmanesh, M. Kubicki, G. Dutkiewicz , S. Samiee, J. Mol. Struct. 1091 (2015) 81 (https://doi.org/10.1016/j.molstruc.2015.02.060)

S. Shukla, R. S. Srivastava, S. K. Shrivastava, A. Sodhi, P. Kumar, Med. Chem. Res. 22 (2013) 1604 (https://doi.org/10.1007/s00044-012-0150-7)

M. F. Zaltariov, M. Cazacu, M. Avadanei, S. Shova, M. Balan, N. Vornicu., V. C. Varganici, Polyhedron 100 (2015) 121 (https://doi.org/10.1016/j.poly.2015.07.030)

E. M. Zayed, M. A. Zayed, Spectrochim Acta A Mol BiomolSpectrosc. 143 (2015) 81(https://doi.org/10.1016/j.saa.2015.02.024)

T. Rosu, E. Pahontu, C. Maxim, R. Georgescu, N. Stanica, G.L. Almajan, A. Gulea, Polyhedron. 29 (2010) 757 (https://doi.org/10.1016/j.poly.2009.10.017)

J. Rahchamani, M. Behzad, A. Bezaatpour, V. Jahed, G. Dutkiewicz, M. Kubicki, M. Salehi, Polyhedron. 30 (2011) 2611 (https://doi.org/10.1016/j.poly.2011.07.011)

T. Castano, A. Encinas, C. Perez, A. Castro, N. E. Campille, C. Gil, Bioorg. Med. Chem. 16 (2008) 6193 (https://doi.org/10.1016/j.bmc.2008.04.036)

R. G. Bogle, G. S. Whitley, S. C. Soo, A. P. Johnstone, P. Vallance, British. J. Pharmacol. 111 (1994) 1257 (https://doi.org/10.1111/j.1476-5381.1994.tb14881.x)

C. Lee, W. Yang, R. G. Parr, Phys. Rev. B37 (1998) 785 (https://doi.org/10.1103/PhysRevB.37.785)

A. D. Becke, J. Chem. Phys. 98 (1993) 5648 (https://doi.org/10.1063/1.464913)

A. Frisch, A. B. Nielsen, A. J. Holder, Gauss View User Manual, Gaussian Inc. Pittsburg, 2001(https://www.cwu.edu/chemistry/sites/cts.cwu.edu.chemistry/files/documents/Gaussian_09_ReferenceManual.pdf)

R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 54 (1971) 724 (https://doi.org/10.1063/1.1674902)

M. J. Frisch, G. W. Trucks et al., GAUSSIAN 09, Revision A. 02, GAUSSIAN Inc, Wallingford, CT (2009) (http://wild.life.nctu.edu.tw/~jsyu/compchem/g09/g09ur/m_citation.htm)

R. Dennington II, T. Keith, J. Millam, GaussView, Version 4.1.2, Semichem Inc, Shawnee Mission, KS, 2007 (https://aae.wisc.edu/aae637/gauss_9_light/UserGuide9.0.pdf)

M. A. Ansari, M. K. Haris, A. K. Aijaz, S. Asfia, Biol. Med.3 (2011) 141 (https://www.sid.ir/En/Journal/ViewPaper.aspx?ID=398130)

M. Mishra, K. Tiwari, P. Mourya, M. M. Singh, V. P. Singh, Polyhedron.89 (2015) 29 (https://doi.org/10.1016/j.poly.2015.01.003)

G. Y. Nagesh, B. H. M. Mruthyunjayaswamy, J. Mol. Struct.1085 (2015) 198 (https://doi.org/10.1016/j.molstruc.2014.12.058)

S. Gurunath, M. P. Sathisha, V. Naveen, B. Srinivasa, K. Vidyanand, Med. Chem. Res. 20 (2011) 421 (https://doi.org/10.1007/s00044-010-9330-5)

A. B. P. Lever, Inorganic Electronic Spectroscopy, second ed., Elsevier Sci. Amsterdam, The Netherlands,1984. (http://garfield.library.upenn.edu/classics1992/A1992JQ35000002.pdf)

K. Rajendra, A.P. Mishra, J. Saudi Chem. Soc.20 (2016) 12 (https://doi.org/10.1016/j.jscs.2012.06.002)

M. Gaber, A.M. Hassanein, A.A. Lotfalla, J. Mol. Struct.875 (2008) 322 (https://doi.org/10.1016/j.molstrcu.2007.05.009)

F. A. Cotton, C. Wilkinson, C. A. Murillo, M. Bochmann, Advanced Inorganic Chemistry, sixth ed., Willey, Newyork, 1999 (ISBN 0-471-19957-5)

M. A. Neelkandan, F. Rusalraj, J. Dharmaraja, S. Johnsonraja, T. Jeyakumar, M. Sankaranarayan Pillai, Spectrochim. Acta. A. Mol. Biomol. Spectrosc.71 (2008) 1599 (https://doi.org/10.1016/j.saa.2008.06.008)

A. M. Gouda, H. A. El-Ghamry, T. M. Bawazeer, T. A. Farghaly, A. N. Abdalla, A. Aslam, Eur. J. Med. Chem. 145 (2018) 350.(https://doi.org/10.1016/j.ejmech.2018.01.009)

A. A. Abdel Aziz, A. Shawky, M. H. Khalil, Appl. Organomet. Chem. 32(9) (2018) 4404 (https://doi.org/10.1002/aoc.4404)

T.Koopmans, Physica.1 (1934) 104 (https://doi.org/10.1016/S0031-8914(34)90011-2)

M. Rocha, A. Di Santo, J.M. Arias, D. M. Gil, A. Ben Altabef, Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 136 (2015) 635 (https://doi.org/10.1016/j.saa.2014.09.077)

K. R. S. Gowda, H. S. B. Naik, B. V. Kumar, C. N. Sudhamani, H. V. Sudeep, T. R. R. Naik, G. Krishnamurthy, Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 105 (2013) 229 (https://doi.org/10.1016/j.saa.2012.12.011)

L. P. Nitha, R. Aswathy, N. E. Mathews, B. S. Kumari, K. Mohanan, Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 118 (2014) 154 (https://doi.org/10.1016/j.saa.2013.08.075)

K. Mohanan, S. N. Devi, B. Murukan, Synth. React. Inorg. Met. Org. Nano-Met. Chem. 36 (2006) 441 (https://doi.org/10.1080/15533170600777788)

T. Arun, S. Packianathan, M. Malarvizhi, R. Antony, N. Raman, J. Photochem. Photobiol. Biol. B. 149 (2015) 93 (https://doi.org/10.1016/j.jphotobiol.2015.05.022)

R. Senthil Kumar, S. Arunachalam, Polyhedron 26(2007) 3255 (https://doi.org/10.1016/j.poly.2007.03.001)




DOI: https://doi.org/10.2298/JSC181128049V

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.797 (139 of 171 journals)
5 Year Impact Factor 0.923 (134 of 171 journals)