Synthesis, characterization, thermal, theoretical and antimicrobial studies of Schiff base ligand and its Co(II) and Cu(II) complexes

Main Article Content

Radha Venkittapuram Palaniswamy
Mahalakshmi Dhandapani
Jonekirubavathy Suyambulingam
Chitra Subramanian

Abstract

A Schiff base ligand L was synthesized by condensation of 1,2-diam­inoethane with creatinine. The reaction of the ligand with metal chloride salt gives Co(II) and Cu(II) complexes. The synthesized ligand and its metal com­plexes were characterized by elemental analysis, FT-IR, NMR, UV–Vis, con­duct­ivity and magnetic susceptibility measurements as well as thermal ana­lyses. Based on spectral data, tetrahedral geometries have been proposed for the Co(II) and Cu(II) complexes. The molar conductivity data show that the com­plexes are non-electrolytic in nature. In DFT studies, the geometry of the Schiff base ligand and its Co(II) and Cu(II) complexes were fully optimized using the B3LYP functional together with 6-31g(d,p) and LANL2DZ basis sets. The ligand and its metal complexes were tested against four bacterial species and two fungal species. The results revealed that the metal complexes are more potent against the microbes than the parent ligand.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
R. Venkittapuram Palaniswamy, M. Dhandapani, J. Suyambulingam, and C. Subramanian, “Synthesis, characterization, thermal, theoretical and antimicrobial studies of Schiff base ligand and its Co(II) and Cu(II) complexes”, J. Serb. Chem. Soc., vol. 85, no. 2, pp. 215–225, Mar. 2020.
Section
Inorganic Chemistry
Author Biographies

Radha Venkittapuram Palaniswamy, Department of Chemistry, Jansons Institute of Technology, Coimbatore 641659, Tamil Nadu

Department of Chemistry

Jonekirubavathy Suyambulingam, Department of Chemistry, P.S.G.R. Krishnammal College for Women, Coimbatore 641004 Tamil Nadu

Assistant Professor

Department of Chemistry

Chitra Subramanian, Department of Chemistry, P.S.G.R. Krishnammal College for Women, Coimbatore 641004 Tamil Nadu

Associate professor and Head

Department of chemistry

 

References

L. Thunus, R. Lejeune, Coord. Chem. Rev. 184 (1999) 125 (https://doi.org/10.1016/S0010-8545(98)00206-9)

S. J. Coles, M. B. Hursthouse, D. G. Kelly, A. J. Toner, N. M. Walker, Dalton Trans. (1998) 3489 (https://doi.org/10.1039/A805764H)

A. K. Sharma, S. Chandra, Spectrochim. Acta, A 78 (2011) 337 (https://doi.org10.1016/j.saa.2010.10.017)

C. A. McAuliffe, R. V. Parish, S. M. Abu-El-Wafa, R. M. Issa, Inorg. Chim. Acta 115 (1986) 91 (https://doi.org/10.1016/S0020-1693(00)87702-6)

S. Zolezzi, E. Spodine, A. Decinti, Polyhedron 21 (2002) 55 (https://doi.org/10.1016/S0277-5387(01)00960-3)

V. Ambike, S. Adsule, F. Ahmed, Z. Wang, Z. Afrasiabi, E. Sinn, F. Sarkar, S. Padhye, J. Inorg. Biochem. 101 (2007) 1517 (https://doi.org/10.1016/j.jinorgbio.2007.06.028)

T. W. Hambley, L. F. Lindoy, J. R. Reimers, P. Turner, W. Wei, A. N. W. Cooper, Dalton Trans. (2001) 614 (https://doi.org/10.1039/B008789K)

S. Chandra, L. K. Cupta, Transition Met. Chem. 30 (2005) 630 (https://doi.org/10.1007/s11243-005-4826-4)

G. Y. Nagesh, K. M. Raj, B. H. M. Mruthyunjayaswamy, J. Mol. Struct. 1079 (2015) 423 (https://doi.org/10.1016/j.molstruc.2014.09.013)

M. Salehi, A. Amoozadeh, A. Salamatmanesh, M. Kubicki, G. Dutkiewicz , S. Samiee, J. Mol. Struct. 1091 (2015) 81 (https://doi.org/10.1016/j.molstruc.2015.02.060)

S. Shukla, R. S. Srivastava, S. K. Shrivastava, A. Sodhi, P. Kumar, Med. Chem. Res. 22 (2013) 1604 (https://doi.org/10.1007/s00044-012-0150-7)

M. F. Zaltariov, M. Cazacu, M. Avadanei, S. Shova, M. Balan, N. Vornicu., V. C. Varganici, Polyhedron 100 (2015) 121 (https://doi.org/10.1016/j.poly.2015.07.030)

E. M. Zayed, M. A. Zayed, Spectrochim. Acta, A 143 (2015) 81(https://doi.org/10.1016/j.saa.2015.02.024)

T. Rosu, E. Pahontu, C. Maxim, R. Georgescu, N. Stanica, G. L. Almajan, A. Gulea, Polyhedron 29 (2010) 757 (https://doi.org/10.1016/j.poly.2009.10.017)

J. Rahchamani, M. Behzad, A. Bezaatpour, V. Jahed, G. Dutkiewicz, M. Kubicki, M. Salehi, Polyhedron 30 (2011) 2611 (https://doi.org/10.1016/j.poly.2011.07.011)

T. Castano, A. Encinas, C. Perez, A. Castro, N. E. Campille, C. Gil, Bioorg. Med. Chem. 16 (2008) 6193 (https://doi.org/10.1016/j.bmc.2008.04.036)

R. G. Bogle, G. S. Whitley, S. C. Soo, A. P. Johnstone, P. Vallance, Br. J. Pharmacol. 111 (1994) 1257 (https://doi.org/10.1111/j.1476-5381.1994.tb14881.x)

C. Lee, W. Yang, R. G. Parr, Phys. Rev., B 37 (1998) 785 (https://doi.org/10.1103/PhysRevB.37.785)

A. D. Becke, J. Chem. Phys. 98 (1993) 5648 (https://doi.org/10.1063/1.464913)

A. Frisch, A. B. Nielsen, A. J. Holder, Gauss View User Manual, Gaussian Inc., Pittsburg, PA, 2001 (https://www.cwu.edu/chemistry/sites/cts.cwu.edu.chemistry/files/documents/Gaussian_09_ReferenceManual.pdf)

R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 54 (1971) 724 (https://doi.org/10.1063/1.1674902)

Gaussian 09, Revision A. 02,Gaussian, Inc., Wallingford, CT, 2016 (http://wild.life.nctu.edu.tw/~jsyu/compchem/g09/g09ur/m_citation.htm)

R. Dennington II, T. Keith, J. Millam, GaussView, Version 4.1.2, Semichem Inc., Shawnee Mission, KS, 2007 (https://aae.wisc.edu/aae637/gauss_9_light/UserGuide9.0.pdf)

M. A. Ansari, M. K. Haris, A. K. Aijaz, S. Asfia, Biol. Med. 3 (2011) 141 (https://www.sid.ir/En/Journal/ViewPaper.aspx?ID=398130)

M. Mishra, K. Tiwari, P. Mourya, M. M. Singh, V. P. Singh, Polyhedron.89 (2015) 29 (https://doi.org/10.1016/j.poly.2015.01.003)

G. Y. Nagesh, B. H. M. Mruthyunjayaswamy, J. Mol. Struct.1085 (2015) 198 (https://doi.org/10.1016/j.molstruc.2014.12.058)

S. Gurunath, M. P. Sathisha, V. Naveen, B. Srinivasa, K. Vidyanand, Med. Chem. Res. 20 (2011) 421 (https://doi.org/10.1007/s00044-010-9330-5)

A. B. P. Lever, Inorganic Electronic Spectroscopy, 2nd ed., Elsevier Sci., Amsterdam, 1984 (http://garfield.library.upenn.edu/classics1992/A1992JQ35000002.pdf)

K. Rajendra, A. P. Mishra, J. Saudi Chem. Soc.20 (2016) 12 (https://doi.org/10.1016/j.jscs.2012.06.002)

M. Gaber, A. M. Hassanein, A. A. Lotfalla, J. Mol. Struct. 875 (2008) 322 (https://doi.org/10.1016/j.molstrcu.2007.05.009)

F. A. Cotton, C. Wilkinson, C. A. Murillo, M. Bochmann, Advanced Inorganic Chemistry, 6th ed., Wiley, New York, 1999 (ISBN 0-471-19957-5)

M. A. Neelkandan, F. Rusalraj, J. Dharmaraja, S. Johnsonraja, T. Jeyakumar, M. Sankaranarayan Pillai, Spectrochim. Acta, A 71 (2008) 1599 (https://doi.org/10.1016/j.saa.2008.06.008)

A. M. Gouda, H. A. El-Ghamry, T. M. Bawazeer, T. A. Farghaly, A. N. Abdalla, A. Aslam, Eur. J. Med. Chem. 145 (2018) 350 (https://doi.org/10.1016/j.ejmech.2018.01.009)

A. A. Abdel Aziz, A. Shawky, M. H. Khalil, Appl. Organomet. Chem. 32 (2018) 4404 (https://doi.org/10.1002/aoc.4404)

T. Koopmans, Physica 1 (1934) 104 (https://doi.org/10.1016/S0031-8914(34)90011-2)

M. Rocha, A. Di Santo, J. M. Arias, D. M. Gil, A. Ben Altabef, Spectrochim. Acta, A 136 (2015) 635 (https://doi.org/10.1016/j.saa.2014.09.077)

K. R. S. Gowda, H. S. B. Naik, B. V. Kumar, C. N. Sudhamani, H. V. Sudeep, T. R. R. Naik, G. Krishnamurthy, Spectrochim. Acta, A 105 (2013) 229 (https://doi.org/10.1016/j.saa.2012.12.011)

L. P. Nitha, R. Aswathy, N. E. Mathews, B. S. Kumari, K. Mohanan, Spectrochim. Acta, A 118 (2014) 154 (https://doi.org/10.1016/j.saa.2013.08.075)

K. Mohanan, S. N. Devi, B. Murukan, Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 36 (2006) 441 (https://doi.org/10.1080/15533170600777788)

T. Arun, S. Packianathan, M. Malarvizhi, R. Antony, N. Raman, J. Photochem. Photobiol., B 149 (2015) 93 (https://doi.org/10.1016/j.jphotobiol.2015.05.022)

R. Senthil Kumar, S. Arunachalam, Polyhedron 26 (2007) 3255 (https://doi.org/10.1016/j.poly.2007.03.001).