Synthesis, characterization, thermal, theoretical and antimicrobial studies of Schiff base ligand and its Co(II) and Cu(II) complexes

Radha Venkittapuram Palaniswamy, Mahalakshmi Dhandapani, Jonekirubavathy Suyambulingam, Chitra Subramanian

Abstract


A Schiff base ligand L was synthesized by condensation of 1,2-diam­inoethane with creatinine. The reaction of the ligand with metal chloride salt gives Co(II) and Cu(II) complexes. The synthesized ligand and its metal com­plexes were characterized by elemental analysis, FT-IR, NMR, UV–Vis, con­duct­ivity and magnetic susceptibility measurements as well as thermal ana­lyses. Based on spectral data, tetrahedral geometries have been proposed for the Co(II) and Cu(II) complexes. The molar conductivity data show that the com­plexes are non-electrolytic in nature. In DFT studies, the geometry of the Schiff base ligand and its Co(II) and Cu(II) complexes were fully optimized using the B3LYP functional together with 6-31g(d,p) and LANL2DZ basis sets. The ligand and its metal complexes were tested against four bacterial species and two fungal species. The results revealed that the metal complexes are more potent against the microbes than the parent ligand.


Keywords


Schiff base; Co(II), Cu(II); DFT; biological

References


L. Thunus, R. Lejeune, Coord. Chem. Rev. 184 (1999) 125 (https://doi.org/10.1016/S0010-8545(98)00206-9)

S. J. Coles, M. B. Hursthouse, D. G. Kelly, A. J. Toner, N. M. Walker, Dalton Trans. (1998) 3489 (https://doi.org/10.1039/A805764H)

A. K. Sharma, S. Chandra, Spectrochim. Acta, A 78 (2011) 337 (https://doi.org10.1016/j.saa.2010.10.017)

C. A. McAuliffe, R. V. Parish, S. M. Abu-El-Wafa, R. M. Issa, Inorg. Chim. Acta 115 (1986) 91 (https://doi.org/10.1016/S0020-1693(00)87702-6)

S. Zolezzi, E. Spodine, A. Decinti, Polyhedron 21 (2002) 55 (https://doi.org/10.1016/S0277-5387(01)00960-3)

V. Ambike, S. Adsule, F. Ahmed, Z. Wang, Z. Afrasiabi, E. Sinn, F. Sarkar, S. Padhye, J. Inorg. Biochem. 101 (2007) 1517 (https://doi.org/10.1016/j.jinorgbio.2007.06.028)

T. W. Hambley, L. F. Lindoy, J. R. Reimers, P. Turner, W. Wei, A. N. W. Cooper, Dalton Trans. (2001) 614 (https://doi.org/10.1039/B008789K)

S. Chandra, L. K. Cupta, Transition Met. Chem. 30 (2005) 630 (https://doi.org/10.1007/s11243-005-4826-4)

G. Y. Nagesh, K. M. Raj, B. H. M. Mruthyunjayaswamy, J. Mol. Struct. 1079 (2015) 423 (https://doi.org/10.1016/j.molstruc.2014.09.013)

M. Salehi, A. Amoozadeh, A. Salamatmanesh, M. Kubicki, G. Dutkiewicz , S. Samiee, J. Mol. Struct. 1091 (2015) 81 (https://doi.org/10.1016/j.molstruc.2015.02.060)

S. Shukla, R. S. Srivastava, S. K. Shrivastava, A. Sodhi, P. Kumar, Med. Chem. Res. 22 (2013) 1604 (https://doi.org/10.1007/s00044-012-0150-7)

M. F. Zaltariov, M. Cazacu, M. Avadanei, S. Shova, M. Balan, N. Vornicu., V. C. Varganici, Polyhedron 100 (2015) 121 (https://doi.org/10.1016/j.poly.2015.07.030)

E. M. Zayed, M. A. Zayed, Spectrochim. Acta, A 143 (2015) 81(https://doi.org/10.1016/j.saa.2015.02.024)

T. Rosu, E. Pahontu, C. Maxim, R. Georgescu, N. Stanica, G. L. Almajan, A. Gulea, Polyhedron 29 (2010) 757 (https://doi.org/10.1016/j.poly.2009.10.017)

J. Rahchamani, M. Behzad, A. Bezaatpour, V. Jahed, G. Dutkiewicz, M. Kubicki, M. Salehi, Polyhedron 30 (2011) 2611 (https://doi.org/10.1016/j.poly.2011.07.011)

T. Castano, A. Encinas, C. Perez, A. Castro, N. E. Campille, C. Gil, Bioorg. Med. Chem. 16 (2008) 6193 (https://doi.org/10.1016/j.bmc.2008.04.036)

R. G. Bogle, G. S. Whitley, S. C. Soo, A. P. Johnstone, P. Vallance, Br. J. Pharmacol. 111 (1994) 1257 (https://doi.org/10.1111/j.1476-5381.1994.tb14881.x)

C. Lee, W. Yang, R. G. Parr, Phys. Rev., B 37 (1998) 785 (https://doi.org/10.1103/PhysRevB.37.785)

A. D. Becke, J. Chem. Phys. 98 (1993) 5648 (https://doi.org/10.1063/1.464913)

A. Frisch, A. B. Nielsen, A. J. Holder, Gauss View User Manual, Gaussian Inc., Pittsburg, PA, 2001 (https://www.cwu.edu/chemistry/sites/cts.cwu.edu.chemistry/files/documents/Gaussian_09_ReferenceManual.pdf)

R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 54 (1971) 724 (https://doi.org/10.1063/1.1674902)

Gaussian 09, Revision A. 02,Gaussian, Inc., Wallingford, CT, 2016 (http://wild.life.nctu.edu.tw/~jsyu/compchem/g09/g09ur/m_citation.htm)

R. Dennington II, T. Keith, J. Millam, GaussView, Version 4.1.2, Semichem Inc., Shawnee Mission, KS, 2007 (https://aae.wisc.edu/aae637/gauss_9_light/UserGuide9.0.pdf)

M. A. Ansari, M. K. Haris, A. K. Aijaz, S. Asfia, Biol. Med. 3 (2011) 141 (https://www.sid.ir/En/Journal/ViewPaper.aspx?ID=398130)

M. Mishra, K. Tiwari, P. Mourya, M. M. Singh, V. P. Singh, Polyhedron.89 (2015) 29 (https://doi.org/10.1016/j.poly.2015.01.003)

G. Y. Nagesh, B. H. M. Mruthyunjayaswamy, J. Mol. Struct.1085 (2015) 198 (https://doi.org/10.1016/j.molstruc.2014.12.058)

S. Gurunath, M. P. Sathisha, V. Naveen, B. Srinivasa, K. Vidyanand, Med. Chem. Res. 20 (2011) 421 (https://doi.org/10.1007/s00044-010-9330-5)

A. B. P. Lever, Inorganic Electronic Spectroscopy, 2nd ed., Elsevier Sci., Amsterdam, 1984 (http://garfield.library.upenn.edu/classics1992/A1992JQ35000002.pdf)

K. Rajendra, A. P. Mishra, J. Saudi Chem. Soc.20 (2016) 12 (https://doi.org/10.1016/j.jscs.2012.06.002)

M. Gaber, A. M. Hassanein, A. A. Lotfalla, J. Mol. Struct. 875 (2008) 322 (https://doi.org/10.1016/j.molstrcu.2007.05.009)

F. A. Cotton, C. Wilkinson, C. A. Murillo, M. Bochmann, Advanced Inorganic Chemistry, 6th ed., Wiley, New York, 1999 (ISBN 0-471-19957-5)

M. A. Neelkandan, F. Rusalraj, J. Dharmaraja, S. Johnsonraja, T. Jeyakumar, M. Sankaranarayan Pillai, Spectrochim. Acta, A 71 (2008) 1599 (https://doi.org/10.1016/j.saa.2008.06.008)

A. M. Gouda, H. A. El-Ghamry, T. M. Bawazeer, T. A. Farghaly, A. N. Abdalla, A. Aslam, Eur. J. Med. Chem. 145 (2018) 350 (https://doi.org/10.1016/j.ejmech.2018.01.009)

A. A. Abdel Aziz, A. Shawky, M. H. Khalil, Appl. Organomet. Chem. 32 (2018) 4404 (https://doi.org/10.1002/aoc.4404)

T. Koopmans, Physica 1 (1934) 104 (https://doi.org/10.1016/S0031-8914(34)90011-2)

M. Rocha, A. Di Santo, J. M. Arias, D. M. Gil, A. Ben Altabef, Spectrochim. Acta, A 136 (2015) 635 (https://doi.org/10.1016/j.saa.2014.09.077)

K. R. S. Gowda, H. S. B. Naik, B. V. Kumar, C. N. Sudhamani, H. V. Sudeep, T. R. R. Naik, G. Krishnamurthy, Spectrochim. Acta, A 105 (2013) 229 (https://doi.org/10.1016/j.saa.2012.12.011)

L. P. Nitha, R. Aswathy, N. E. Mathews, B. S. Kumari, K. Mohanan, Spectrochim. Acta, A 118 (2014) 154 (https://doi.org/10.1016/j.saa.2013.08.075)

K. Mohanan, S. N. Devi, B. Murukan, Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 36 (2006) 441 (https://doi.org/10.1080/15533170600777788)

T. Arun, S. Packianathan, M. Malarvizhi, R. Antony, N. Raman, J. Photochem. Photobiol., B 149 (2015) 93 (https://doi.org/10.1016/j.jphotobiol.2015.05.022)

R. Senthil Kumar, S. Arunachalam, Polyhedron 26 (2007) 3255 (https://doi.org/10.1016/j.poly.2007.03.001).




DOI: https://doi.org/10.2298/JSC181128049V

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)