Application of the eco-friendly subcritical water oxidation method in the degradation of epichlorohydrin

Erdal Yabalak, İpek Topaloğlu, Ahmet Murat Gizir

Abstract


Degradation of epichlorohydrin was investigated using subcritical water oxidation method in the presence of hydrogen peroxide. Degradation rate was monitored by means of TOC analysis. The central composite design was used to determine optimal TOC removal conditions and modeling experimental process. The effects of all experimental variables (temperature, oxidant concentration of hydrogen peroxide and treatment time) on the TOC removal rates were evaluated and the theoretical prediction model was proposed. Reliability of the employed model was evaluated using ANOVA. F value and the p-value of the model were found to be 84.60 and <0.0001, respectively. 93.78% of TOC removal was achieved in the degradation of epichlorohydrin at 373 K of temperature, 75 min of treatment time using 90 mM of H2O2.


Keywords


Epichlorohydrin; degradation, ANOVA; eco-friendly method; subcri¬tical water

Full Text:

PDF (1,649 kB)

References


C. Sarzanini, M.C. Bruzzoniti, E. Mentasti, J. Chromatogr. A 884 (2000) 251 (https://doi.org/10.1016/S0021-9673(00)00252-1)

H. Hindsø Landin, T. Grummt, C. Laurent, A. Tates, Mutat. Res. 381 (1997) 217 (https://doi.org/10.1016/S0027-5107(97)00171-1)

L. Lucentini, E. Ferretti, E. Veschetti, V. Sibio, G. Citti and M. Ottaviani, Microchem. J.80 (2005) 89 (https://doi.org/10.1016/j.microc.2004.12.003)

M.C. Bruzzoniti, S. Andrensek, M. Novic, D. Perrachon, C. Sarzanini, J. Chromatogr. A. 1034 (2004) 243 (https://doi.org/10.1016/j.chroma.2004.02.033)

J. Gaca and W.Grażyna, Talanta 70 (2006) 1044 (https://doi.org/10.1016/j.talanta.2006.02.017)

M. Lasa, R. Garcia, E. Millán, J. Chromatogr. Sci. 44 (2006) 438 (https://doi.org/10.1093/chromsci/44.7.438)

K. Chandrasekara Pillai, G. Muthuraman, Il-Shik Moon, Electrochim. Acta. 232 (2017) 570 (https://doi.org/10.1016/j.electacta.2017.02.147)

E. Yabalak, J. Environ. Chem. Eng. 6 (2018) 7132 (https://doi.org/10.1016/j.jece.2018.10.010)

E. Yabalak, A.M. Gizir, J. Serb. Chem. Soc. 78 (2013) 1013 (https://doi.org/10.2298/JSC120321123Y)

Y. Nural, M. Gemili, E. Yabalak, L. De Coen, M. Ulger, Arkivoc. 2018 (5) (2018) 51 (https://doi.org/10.24820/ark.5550190.p010.573)

E. Yabalak, J. Environ. Sci. Health, A. 53 (2018) 975 (https://doi.org/10.1080/10934529.2018.1471023)

J.L. Pilkington, C. Preston, R.L. Gomes, Ind. Crop. Prod. 58 (2014) 15-24. (https://doi.org/10.1016/j.indcrop.2014.03.016)

A. Llop, E. Pocurull, F. Borrull, Water Air Soil Pollut. 197 (2009) 349 (https://doi.org/10.1007/s11270-008-9816-7)

S. Karimifard, M.R.A. Moghaddam, Sci. Total Environ. 640-641 (2018) 772 (https://doi.org/10.1016/j.scitotenv.2018.05.355)

C. R. T. Tarley, G. Silveira, W. N. L. dos Santos, G. D. Matos, E. G. P. da Silva, M. A. Bezerra, M. Miró, S. L. C. Ferreira, Microchem. J. 92 (2009) 58 (https://doi.org/10.1016/j.microc.2009.02.002)




DOI: https://doi.org/10.2298/JSC181208027Y

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.797 (139 of 171 journals)
5 Year Impact Factor 0.923 (134 of 171 journals)