Application of the eco-friendly subcritical water oxidation method in the degradation of epichlorohydrin
Main Article Content
Abstract
Degradation of epichlorohydrin was investigated using subcritical water oxidation method in the presence of hydrogen peroxide. Degradation rate was monitored by means of total organic carbon (TOC) analysis. The central composite design was used to determine optimal TOC removal conditions and modelling experimental process. The effects of all experimental variables (temperature, oxidant concentration of hydrogen peroxide and treatment time) on the TOC removal rates were evaluated and the theoretical prediction model was proposed. Reliability of the employed model was evaluated using ANOVA. F value and the p-value of the model were found to be 84.60 and <0.0001, respectively. 93.78 % of TOC removal was achieved in the degradation of epichlorohydrin at 373 K of temperature and 75 min of treatment time using 90 mM of H2O2.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
C. Sarzanini, M.C. Bruzzoniti, E. Mentasti, J. Chromatogr., A 884 (2000) 251 (https://doi.org/10.1016/S0021-9673(00)00252-1)
H. Hindsø Landin, T. Grummt, C. Laurent, A. Tates, Mutat. Res. 381 (1997) 217 (https://doi.org/10.1016/S0027-5107(97)00171-1)
L. Lucentini, E. Ferretti, E. Veschetti, V. Sibio, G. Citti and M. Ottaviani, Microchem. J. 80 (2005) 89 (https://doi.org/10.1016/j.microc.2004.12.003)
M.C. Bruzzoniti, S. Andrensek, M. Novic, D. Perrachon, C. Sarzanini, J. Chromatogr., A 1034 (2004) 243 (https://doi.org/10.1016/j.chroma.2004.02.033)
J. Gaca and W.Grażyna, Talanta 70 (2006) 1044 (https://doi.org/10.1016/j.talanta.2006.02.017)
M. Lasa, R. Garcia, E. Millán, J. Chromatogr. Sci. 44 (2006) 438 (https://doi.org/10.1093/chromsci/44.7.438)
K. Chandrasekara Pillai, G. Muthuraman, I.-S. Moon, Electrochim. Acta 232 (2017) 570 (https://doi.org/10.1016/j.electacta.2017.02.147)
E. Yabalak, J. Environ. Chem. Eng. 6 (2018) 7132 (https://doi.org/10.1016/j.jece.2018.10.010)
E. Yabalak, A.M. Gizir, J. Serb. Chem. Soc. 78 (2013) 1013 (https://doi.org/10.2298/JSC120321123Y)
Y. Nural, M. Gemili, E. Yabalak, L. De Coen, M. Ulger, Arkivoc 2018 (5) (2018) 51 (https://doi.org/10.24820/ark.5550190.p010.573)
E. Yabalak, J. Environ. Sci. Health, A 53 (2018) 975 (https://doi.org/10.1080/10934529.2018.1471023)
J.L. Pilkington, C. Preston, R.L. Gomes, Ind. Crop. Prod. 58 (2014) 15 (https://doi.org/10.1016/j.indcrop.2014.03.016)
A. Llop, E. Pocurull, F. Borrull, Water Air Soil Pollut. 197 (2009) 349 (https://doi.org/10.1007/s11270-008-9816-7)
S. Karimifard, M.R.A. Moghaddam, Sci. Total Environ. 640–641 (2018) 772 (https://doi.org/10.1016/j.scitotenv.2018.05.355)
C. R. T. Tarley, G. Silveira, W. N. L. dos Santos, G. D. Matos, E. G. P. da Silva, M. A. Bezerra, M. Miró, S. L. C. Ferreira, Microchem. J. 92 (2009) 58 (https://doi.org/10.1016/j.microc.2009.02.002).