Application of the eco-friendly subcritical water oxidation method in the degradation of epichlorohydrin

Erdal Yabalak, İpek Topaloğlu, Ahmet Murat Gizir

Abstract


Degradation of epichlorohydrin was investigated using subcritical water oxidation method in the presence of hydrogen peroxide. Degradation rate was monitored by means of total organic carbon (TOC) analysis. The central composite design was used to determine optimal TOC removal conditions and modelling experimental process. The effects of all experimental variables (tem­perature, oxidant concentration of hydrogen peroxide and treatment time) on the TOC removal rates were evaluated and the theoretical prediction model was proposed. Reliability of the employed model was evaluated using ANOVA. F value and the p-value of the model were found to be 84.60 and <0.0001, respectively. 93.78 % of TOC removal was achieved in the degrad­ation of epichlorohydrin at 373 K of temperature and 75 min of treatment time using 90 mM of H2O2.


Keywords


epichlorohydrin; degradation, ANOVA; eco-friendly method; subcritical water

Full Text:

PDF (563 kB)

References


C. Sarzanini, M.C. Bruzzoniti, E. Mentasti, J. Chromatogr., A 884 (2000) 251 (https://doi.org/10.1016/S0021-9673(00)00252-1)

H. Hindsø Landin, T. Grummt, C. Laurent, A. Tates, Mutat. Res. 381 (1997) 217 (https://doi.org/10.1016/S0027-5107(97)00171-1)

L. Lucentini, E. Ferretti, E. Veschetti, V. Sibio, G. Citti and M. Ottaviani, Microchem. J. 80 (2005) 89 (https://doi.org/10.1016/j.microc.2004.12.003)

M.C. Bruzzoniti, S. Andrensek, M. Novic, D. Perrachon, C. Sarzanini, J. Chromatogr., A 1034 (2004) 243 (https://doi.org/10.1016/j.chroma.2004.02.033)

J. Gaca and W.Grażyna, Talanta 70 (2006) 1044 (https://doi.org/10.1016/j.talanta.2006.02.017)

M. Lasa, R. Garcia, E. Millán, J. Chromatogr. Sci. 44 (2006) 438 (https://doi.org/10.1093/chromsci/44.7.438)

K. Chandrasekara Pillai, G. Muthuraman, I.-S. Moon, Electrochim. Acta 232 (2017) 570 (https://doi.org/10.1016/j.electacta.2017.02.147)

E. Yabalak, J. Environ. Chem. Eng. 6 (2018) 7132 (https://doi.org/10.1016/j.jece.2018.10.010)

E. Yabalak, A.M. Gizir, J. Serb. Chem. Soc. 78 (2013) 1013 (https://doi.org/10.2298/JSC120321123Y)

Y. Nural, M. Gemili, E. Yabalak, L. De Coen, M. Ulger, Arkivoc 2018 (5) (2018) 51 (https://doi.org/10.24820/ark.5550190.p010.573)

E. Yabalak, J. Environ. Sci. Health, A 53 (2018) 975 (https://doi.org/10.1080/10934529.2018.1471023)

J.L. Pilkington, C. Preston, R.L. Gomes, Ind. Crop. Prod. 58 (2014) 15 (https://doi.org/10.1016/j.indcrop.2014.03.016)

A. Llop, E. Pocurull, F. Borrull, Water Air Soil Pollut. 197 (2009) 349 (https://doi.org/10.1007/s11270-008-9816-7)

S. Karimifard, M.R.A. Moghaddam, Sci. Total Environ. 640–641 (2018) 772 (https://doi.org/10.1016/j.scitotenv.2018.05.355)

C. R. T. Tarley, G. Silveira, W. N. L. dos Santos, G. D. Matos, E. G. P. da Silva, M. A. Bezerra, M. Miró, S. L. C. Ferreira, Microchem. J. 92 (2009) 58 (https://doi.org/10.1016/j.microc.2009.02.002).




DOI: https://doi.org/10.2298/JSC181208027Y

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)