Application of the eco-friendly subcritical water oxidation method in the degradation of epichlorohydrin

Main Article Content

Erdal Yabalak
http://orcid.org/0000-0002-4009-4174
İpek Topaloğlu
Ahmet Murat Gizir

Abstract

Degradation of epichlorohydrin was investigated using subcritical water oxidation method in the presence of hydrogen peroxide. Degradation rate was monitored by means of total organic carbon (TOC) analysis. The central composite design was used to determine optimal TOC removal conditions and modelling experimental process. The effects of all experimental variables (tem­perature, oxidant concentration of hydrogen peroxide and treatment time) on the TOC removal rates were evaluated and the theoretical prediction model was proposed. Reliability of the employed model was evaluated using ANOVA. F value and the p-value of the model were found to be 84.60 and <0.0001, respectively. 93.78 % of TOC removal was achieved in the degrad­ation of epichlorohydrin at 373 K of temperature and 75 min of treatment time using 90 mM of H2O2.

Article Details

How to Cite
[1]
E. Yabalak, İpek Topaloğlu, and A. M. Gizir, “Application of the eco-friendly subcritical water oxidation method in the degradation of epichlorohydrin”, J. Serb. Chem. Soc., vol. 84, no. 7, pp. 757–767, Jul. 2019.
Section
Environmental Chemistry
Author Biographies

Erdal Yabalak, Department of Chemistry, Faculty of Arts and Science, Mersin University, Çiftlikköy Campus, TR-33343, Mersin

Faculty of Arts and Science, Department of Chemistry

İpek Topaloğlu, Department of Chemistry, Faculty of Arts and Science, Mersin University, Çiftlikköy Campus, TR-33343, Mersin

Faculty of Arts and Science, Department of Chemistry

Ahmet Murat Gizir, Department of Chemistry, Faculty of Arts and Science, Mersin University, Çiftlikköy Campus, TR-33343, Mersin

Faculty of Arts and Science, Department of Chemistry

References

C. Sarzanini, M.C. Bruzzoniti, E. Mentasti, J. Chromatogr., A 884 (2000) 251 (https://doi.org/10.1016/S0021-9673(00)00252-1)

H. Hindsø Landin, T. Grummt, C. Laurent, A. Tates, Mutat. Res. 381 (1997) 217 (https://doi.org/10.1016/S0027-5107(97)00171-1)

L. Lucentini, E. Ferretti, E. Veschetti, V. Sibio, G. Citti and M. Ottaviani, Microchem. J. 80 (2005) 89 (https://doi.org/10.1016/j.microc.2004.12.003)

M.C. Bruzzoniti, S. Andrensek, M. Novic, D. Perrachon, C. Sarzanini, J. Chromatogr., A 1034 (2004) 243 (https://doi.org/10.1016/j.chroma.2004.02.033)

J. Gaca and W.Grażyna, Talanta 70 (2006) 1044 (https://doi.org/10.1016/j.talanta.2006.02.017)

M. Lasa, R. Garcia, E. Millán, J. Chromatogr. Sci. 44 (2006) 438 (https://doi.org/10.1093/chromsci/44.7.438)

K. Chandrasekara Pillai, G. Muthuraman, I.-S. Moon, Electrochim. Acta 232 (2017) 570 (https://doi.org/10.1016/j.electacta.2017.02.147)

E. Yabalak, J. Environ. Chem. Eng. 6 (2018) 7132 (https://doi.org/10.1016/j.jece.2018.10.010)

E. Yabalak, A.M. Gizir, J. Serb. Chem. Soc. 78 (2013) 1013 (https://doi.org/10.2298/JSC120321123Y)

Y. Nural, M. Gemili, E. Yabalak, L. De Coen, M. Ulger, Arkivoc 2018 (5) (2018) 51 (https://doi.org/10.24820/ark.5550190.p010.573)

E. Yabalak, J. Environ. Sci. Health, A 53 (2018) 975 (https://doi.org/10.1080/10934529.2018.1471023)

J.L. Pilkington, C. Preston, R.L. Gomes, Ind. Crop. Prod. 58 (2014) 15 (https://doi.org/10.1016/j.indcrop.2014.03.016)

A. Llop, E. Pocurull, F. Borrull, Water Air Soil Pollut. 197 (2009) 349 (https://doi.org/10.1007/s11270-008-9816-7)

S. Karimifard, M.R.A. Moghaddam, Sci. Total Environ. 640–641 (2018) 772 (https://doi.org/10.1016/j.scitotenv.2018.05.355)

C. R. T. Tarley, G. Silveira, W. N. L. dos Santos, G. D. Matos, E. G. P. da Silva, M. A. Bezerra, M. Miró, S. L. C. Ferreira, Microchem. J. 92 (2009) 58 (https://doi.org/10.1016/j.microc.2009.02.002).