Understanding the isomerization kinetics in the gas phase of a triazole-3-thione derivative: A theoretical approach

Zahra Kazeminejad, Abolfazl Shiroudi, Khalil Pourshamsian, Farhad Hatamjafari, Ahmad Reza Oliaey

Abstract


The isomerization reactions of the 4-amino-5-methyl-2,4-dihydro-3H-1,2,4-triazole-3-thione studied using B3LYP and M06-2x as well as the CBS-QB3 theoretical methods. The measured energy profiles are complemented with kinetic rate constants using transition state theory (TST). Based on the optimized isomers geometries using the CBS-QB3method, a natural bond orbital (NBO) analysis shows that the stabilization energies of non-bonding lone-pair orbitals [LP(e)S7] to the s*N2–C3 antibonding orbital increase from isomers 1 to 2. Moreover, the LP(e)S7s*N2–C3 delocalizations could fairly explain the increase of LP(e)S7 orbitals occupancies in the isomers 1 and 2 (2 > 1). The studied stabilization energy increase the ground state structure stability, and could fairly explain the kinetics of the isomerization reactions 1 and 2 (k2 > k1). NBO results also suggest that the kinetics of these processes are controlled by LP→σ* resonance energies.


Keywords


isomerization; rate constant; chemical kinetics; DFT; NBO

Full Text:

PDF (1,600 kB)

References


B. Namratha, S. L. Gaonkar, Int. J. Pharm. 6 (2014) 73 (https://innovareacademics.in/journals/index.php/ijpps/article/view/2778/10493)

S. Nekkanti, R. Tokala, N. Shankaraiah, Curr. Med. Chem. 24 (2017) 2887 (https://doi.org/10.2174/0929867324666170523102730)

J. K. Sahu, S. Ganguly, A. Kaushik, Chin. J. Nat. Med. 11 (2013) 456 (https://doi.org/10.1016/S1875-5364(13)60084-9)

K. T. Potts, Chem. Rev. 61 (1961) 87 (https://doi.org/10.1021/cr60210a001)

N. F. Eweiss, A. A. Bahajaj, E. A. Elsherbini, J. Heterocycl. Chem. 23 (1986) 1451 (https://doi.org/10.1002/jhet.5570230540)

J. M. Kane, M. W. Dudley, S. M. Sorensen, F. P. Miller, J. Med. Chem. 31 (1988) 1253 (https://doi.org/10.1021/jm00401a031)

S. M. Sorensen, J. M. Zwolshen, J. M. Kane, Neuropharmacology 29 (1990) 555 (https://doi.org/10.1016/0028-3908(90)90067-2)

Z. Y. Zhang, H. Yan, Acta Chim. Sinica 45 (1987) 403 (http://manu19.magtech.com.cn/Jwk_hxxb/EN/abstract/abstract333017.shtml)

M. B. Talawar, S. C. Bennur, S. K. Kankanwadi, P. A. Patil, Indian J. Pharm. Sci. 57 (1995) 194 (http://www.ijpsonline.com/abstract/antiinflammatory-activity-of-some-new-3substituted4amino5mercapto4h124triazoles-1906.html)

T. V. Ghochikyan, M. A. Samvelyan, A. S. Galstyan, S. V. Grigoryan, Chem. Biol. 2 (2016) 8 (http://ysu.am/science/en/1465212714)

M. S. Al-Khawas, B. A. A. Hazaa, A. S. Al-Din, Sci. Pharm. 47 (1979) 314

M. D. Davari, H. Bahrami, Z. Zolmajd Haghighi, M. Zahedi. J. Mol. Model. 16 (2010) 841 (https://doi.org/10.1007/s00894-009-0585-z)

M. Koparir, C. Orek, P. Koparir, K. Sarac, Spectrochim. Acta A Mol. Biomol. Spectrosc. 105 (2013) 522 (https://doi.org/10.1016/j.saa.2012.12.052)

Nithinchandra, B. Kalluraya, S. Aamir, A. R. Shabaraya, Eur. J. Med. Chem. 54 (2012) 597 (https://doi.org/10.1016/j.ejmech.2012.06.011)

K. Sztanke, T. Tuzimski, J. Rzymowska, K. Pasternak, M. Kandefer-Szerszeń, Eur. J. Med. Chem. 43 (2008) 404 (https://doi.org/10.1016/j.ejmech.2007.03.033)

A. Ameri, G. Khodarahmi, F. Hassanzadeh, H. Forootanfar, G. -H. Hakimelahi, Arch. Pharm. Chem. Life Sci. 349 (2016) 662 (https://doi.org/10.1002/ardp.201600021)

G. A. Sandip, R. M. Suleman, S. P. Vandana, Chem. Asian J. 6 (2011) 2696 (https://doi.org/10.1002/asia.201100432)

P. Ratchanok, P. Veda, M. Prasit, C. Nantasenamat, S. Prachayasittikul, S. Ruchirawat, Bioorg. Med. Chem. 23 (2015) 3472 (https://doi.org/10.1016/j.bmc.2015.04.036)

R. Kaur, A. R. Dwivedi, B. Kumar, V. Kumar, Anticancer. Agent. Med. Chem. 16 (2016) 465 (https://doi.org/10.2174/1871520615666150819121106)

A. N. Syed, M. Gurumurthy, J. C. Swarup, P. Debashisha, Adv. Pharm. Res. 1 (2010) 26

J. Zhong, H. Aihong, L. Tao, H. Yan, L. Jianbing, F. Jianxin, J. Organomet. Chem. 690 (2005) 1226 (https://doi.org/10.1016/j.jorganchem.2004.11.028)

P. Elzbieta, K. Iwona, II Farmaco 58 (2003) 423 (https://doi.org/10.1016/S0014-827X(03)00071-5)

S. Nadeem, A. Waquar, Eur. J. Med. Chem. 45 (2010) 1536 (https://doi.org/10.1016/j.ejmech.2009.12.062)

J. Chen, X. Y. Sun, K. -Y. Chai, J. -S. Lee, M. S. Song, Z. S. Quan, Bioorg. Med. Chem. 15 (2007) 6775 (https://doi.org/10.1016/j.bmc.2007.08.004)

M. A. Ashraf, M. Hamdy, R. Abdel, S. A. Gamal-Eldien, A. E. Mahamoud, Eur. J. Med. Chem. 44 (2009) 117 (https://doi.org/10.1016/j.ejmech.2008.03.017)

B. Tozkoparan, N. Gokhan, G. Aktay, E. Yesilada, M. Ertan, Eur. J. Med. Chem. 35 (2000) 743 (https://doi.org/10.1016/S0223-5234(00)00157-4)

K. S. Bhat, B. Poojary, D. J. Prasad, P. Naik, B. S. Holla, Eur. J. Med. Chem. 44 (2009) 5066 (https://doi.org/10.1016/j.ejmech.2009.09.010)

B. S. Holla, B. Veerendra, M. K. Shivananda, B. Poojary, Eur. J. Med. Chem. 38 (2003) 759 (https://doi.org/10.1016/S0223-5234(03)00128-4)

S. Saha, D. Dhanasekaran, S. Chandraleka, N. Thajuddin, A. Panneerselvam, Adv. Biol. Res. 4 (2010) 224 (ISSN 1992-0067)

R. Iqbal, N. H. Rama, U. Yunus, A. Saeed, K. Zamani, J. Chem. Soc. Pak 19 (1997) 145 (https://www.jcsp.org.pk/ArticleUpload/1910-8501-1-RV.pdf)

L. Fotouhi, F. Hajilari, M. M. Heravi, Electroanalysis 14 (2002) 1728 (https://doi.org/10.1002/elan.200290017)

H. Gökce, N. Öztürk, Ü. Ceylan, Y. B. Alpaslan, G. Alpaslan, Spectrochim. Acta, Part A 163 (2016) 170 (https://doi.org/10.1016/j.saa.2016.03.041)

R. G. Parr, W. Wang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, Oxford, 1989 (https://doi.org/10.1002/qua.560470107)

C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37 (1988) 785 (https://doi.org/10.1103/PhysRevB.37.785)

A. D. Becke, J. Chem. Phys. 98 (1993) 5648 (https://doi.org/10.1063/1.464913)

Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 41 (2008) 157 (https://doi.org/10.1021/ar700111a)

Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 120 (2008) 215 (https://doi.org/10.1007/s00214-007-0310-x)

T. H. Dunning, Jr., J. Chem. Phys. 90 (1989) 1007 (https://doi.org/10.1063/1.456153)

J. A. Montgomery, Jr., M. J. Frisch, J. W. Ochterski, G. A. Petersson, J. Chem. Phys. 112 (2000) 6532 (https://doi.org/10.1063/1.481224)

K. J. Laidler, M. C. King, J. Phys. Chem. 87 (1983) 2657 (https://doi.org/10.1021/j100238a002)

A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 83 (1985) 735 (https://doi.org/10.1063/1.449486)

J. K. Badenhoop, F. Weinhold, Int. J. Quantum. Chem. 72 (1999) 269 (https://doi.org/10.1002/(SICI)1097-461X(1999)72:4<269::AID-QUA9>3.0.CO;2-8)

Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT, 2009

R. Jasiński, Comp. Theor. Chem. 1046 (2014) 93 (https://doi.org/10.1016/j.comptc.2014.08.002)

R. Casasnovas, J. Frau, J. Ortega-castro, A. Salva, J. Donoso, F. Munoz, Int. J. Quantum. Chem. 110 (2010) 323 (https://doi.org/10.1002/qua.22170)

F. Fukui, J. Phys. Chem. 74 (1970) 4161 (https://doi.org/10.1021/j100717a029)

Z. Safaei, A. Shiroudi, R. Padash, M. Sillanpää, E. Zahedi, J. Fluorine Chem. 216 (2018) 71 (https://doi.org/10.1016/j.jfluchem.2018.10.009)

S. Canneaux, F. Bohr, E. Henon, J. Comput. Chem. 35 (2013) 82 (https://doi.org/10.1002/jcc.23470)

M. D. Allendorf, T. M. Besmann, R. J. Kee, M. T. Swihart, Chemical Vapor Deposition: Precursors, Processes and Applications, 1st ed., The Royal Society of Chemistry, UK, 2009 (http://dx.doi.org/10.1039/9781847558794)

K. A. Holbrook, M. J. Pilling, S. H. Robertson, Unimolecular Reactions, 2nd ed., Wiley, Chichester, New York, 1996 (ISBN 978-0-471-92268-1)

E. Wigner, J. Chem. Phys. 5 (1937) 720 (https://doi.org/10.1063/1.1750107)

E. P. Wigner, Z. Phys. Chem. Abt. B 19 (1932) 203 (https://doi.org/10.1515/zpch-1932-0120)

Computational chemistry comparison and benchmark database, pre-computed vibrational scaling factors. http://cccbdb.nist.gov/vibscalejust.asp

G. S. Hammond, J. Am. Chem. Soc. 77 (1953) 334 (https://doi.org/10.1021/ja01607a027)

N. Agmon, R. D. Levine, Chem. Phys. Lett. 52 (1977) 197 (https://doi.org/10.1016/0009-2614(77)80523-X)

G. Lendvay, J. Phys. Chem. 93 (1989) 4422 (https://doi.org/10.1021/j100348a011)

A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 88 (1988) 899 (https://doi.org/10.1021/cr00088a005)

K. B. Wiberg, Tetrahedron 24 (1968) 1083 (https://doi.org/10.1016/0040-4020(68)88057-3)

A. E. Reed, J. E. Carpenter, F. Weinhold, NBO version 3.1, 2003

A. Moyano, M. A. Periclas, E. Valenti, J. Org. Chem. 54 (1989) 573 (https://doi.org/10.1021/jo00264a014)

F. Rosas, R. M. Dominguez, M. Tosta, J. R. Mora, E. Marquez, T. Cordova, G. Chuchani, J. Phys. Org. Chem. 23 (2010) 743 (https://doi.org/10.1002/poc.1646)

J. E. Carpenter, F. Weinhold, J. Mol. Struct. (Theochem) 169 (1988) 41 (https://doi.org/10.1016/0166-1280(88)80248-3)




DOI: https://doi.org/10.2298/JSC181208013K

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)