Understanding the isomerization kinetics in the gas phase of a triazole-3-thione derivative: A theoretical approach (Short communication)

Main Article Content

Zahra Kazeminejad
Abolfazl Shiroudi
Khalil Pourshamsian
Farhad Hatamjafari
Ahmad Reza Oliaey

Abstract

The isomerization reactions of the 4-amino-5-methyl-2,4-dihydro-
-3H-1,2,4-triazole-3-thione were studied using the B3LYP and M06-2x, as well as the CBS-QB3 theoretical methods. The measured energy profiles were com­plemented with kinetic rate constants using the transition state theory (TST). Based on the isomers geometries optimized using the CBS-QB3 method, a natural bond orbital (NBO) analysis shows that the stabilization energies of non-bonding lone-pair orbitals [LP(e)S7] to the s*N2–C3 antibonding orbital inc­rease from isomers 1 to 2. Moreover, the LP(e)S7 ® s*N2–C3 delocalizations could fairly explain the increase in the occupancies of LP(e)S7 orbitals for iso­mers 1 and 2 (2 > 1). The studied stabilization energy increases the stability of the ground state structure, and could fairly explain the kinetics of the isomer­ization reactions 1 and 2 (k2 > k1). NBO results also suggest that the kinetics of these processes are controlled by the LP ® σ* resonance energies.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
Z. Kazeminejad, A. Shiroudi, K. Pourshamsian, F. Hatamjafari, and A. R. Oliaey, “Understanding the isomerization kinetics in the gas phase of a triazole-3-thione derivative: A theoretical approach (Short communication)”, J. Serb. Chem. Soc., vol. 84, no. 9, pp. 975–989, Oct. 2019.
Section
Theoretical Chemistry

References

B. Namratha, S. L. Gaonkar, Int. J. Pharm. 6(8) (2014) 73 (https://innovareacademics.in/journals/index.php/ijpps/article/view/2778/10493)

S. Nekkanti, R. Tokala, N. Shankaraiah, Curr. Med. Chem. 24 (2017) 2887 (https://doi.org/10.2174/0929867324666170523102730)

J. K. Sahu, S. Ganguly, A. Kaushik, Chin. J. Nat. Med. 11 (2013) 456 (https://doi.org/10.1016/S1875-5364(13)60084-9)

K. T. Potts, Chem. Rev. 61 (1961) 87 (https://doi.org/10.1021/cr60210a001)

N. F. Eweiss, A. A. Bahajaj, E. A. Elsherbini, J. Heterocycl. Chem. 23 (1986) 1451 (https://doi.org/10.1002/jhet.5570230540)

J. M. Kane, M. W. Dudley, S. M. Sorensen, F. P. Miller, J. Med. Chem. 31 (1988) 1253 (https://doi.org/10.1021/jm00401a031)

S. M. Sorensen, J. M. Zwolshen, J. M. Kane, Neuropharmacology 29 (1990) 555 (https://doi.org/10.1016/0028-3908(90)90067-2)

Z. Y. Zhang, H. Yan, Acta Chim. Sin. 45 (1987) 403 (http://manu19.magtech.com.cn/Jwk_hxxb/EN/abstract/abstract333017.shtml)

M. B. Talawar, S. C. Bennur, S. K. Kankanwadi, P. A. Patil, Indian J. Pharm. Sci. 57 (1995) 194 (http://www.ijpsonline.com/abstract/antiinflammatory-activity-of-some-new-3substituted4amino5mercapto4h124triazoles-1906.html)

T. V. Ghochikyan, M. A. Samvelyan, A. S. Galstyan, S. V. Grigoryan, Chem. Biol. 2 (2016) 8 (http://ysu.am/science/en/1465212714)

M. S. Al-Khawas, B. A. A. Hazaa, A. S. Al-Din, Sci. Pharm. 47 (1979) 314

M. D. Davari, H. Bahrami, Z. Zolmajd Haghighi, M. Zahedi. J. Mol. Model. 16 (2010) 841 (https://doi.org/10.1007/s00894-009-0585-z)

M. Koparir, C. Orek, P. Koparir, K. Sarac, Spectrochim. Acta, A 105 (2013) 522 (https://doi.org/10.1016/j.saa.2012.12.052)

Nithinchandra, B. Kalluraya, S. Aamir, A. R. Shabaraya, Eur. J. Med. Chem. 54 (2012) 597 (https://doi.org/10.1016/j.ejmech.2012.06.011)

K. Sztanke, T. Tuzimski, J. Rzymowska, K. Pasternak, M. Kandefer-Szerszeń, Eur. J. Med. Chem. 43 (2008) 404 (https://doi.org/10.1016/j.ejmech.2007.03.033)

A. Ameri, G. Khodarahmi, F. Hassanzadeh, H. Forootanfar, G.-H. Hakimelahi, Arch. Pharm. (Weinheim, Ger.) 349 (2016) 662 (https://doi.org/10.1002/ardp.201600021)

G. A. Sandip, R. M. Suleman, S. P. Vandana, Chem. Asian J. 6 (2011) 2696 (https://doi.org/10.1002/asia.201100432)

P. Ratchanok, P. Veda, M. Prasit, C. Nantasenamat, S. Prachayasittikul, S. Ruchirawat, Bioorg. Med. Chem. 23 (2015) 3472 (https://doi.org/10.1016/j.bmc.2015.04.036)

R. Kaur, A. R. Dwivedi, B. Kumar, V. Kumar, Anticancer Agents Med. Chem. 16 (2016) 465 (https://doi.org/10.2174/1871520615666150819121106)

A. N. Syed, M. Gurumurthy, J. C. Swarup, P. Debashisha, J. Adv. Pharm. Res. 1 (2010) 26

Z. Jin, A. Huo, T. Liu, Y. Hu, J. Liu, J. Fang, J. Organomet. Chem. 690 (2005) 1226 (https://doi.org/10.1016/j.jorganchem.2004.11.028)

E. Pomarnacka, I. Kozlarska-Kedra,, Farmaco 58 (2003) 423 (https://doi.org/10.1016/S0014-827X(03)00071-5)

S. Nadeem, A. Waquar, Eur. J. Med. Chem. 45 (2010) 1536 (https://doi.org/10.1016/j.ejmech.2009.12.062)

J. Chen, X. Y. Sun, K.-Y. Chai, J.-S. Lee, M. S. Song, Z. S. Quan, Bioorg. Med. Chem. 15 (2007) 6775 (https://doi.org/10.1016/j.bmc.2007.08.004)

A. M. Abdel-Megeed, H. M. Abdel-Rahman, G. S. Alkaramany, M. A. El-Gendy, Eur. J. Med. Chem. 44 (2009) 117 (https://doi.org/10.1016/j.ejmech.2008.03.017)

B. Tozkoparan, N. Gokhan, G. Aktay, E. Yesilada, M. Ertan, Eur. J. Med. Chem. 35 (2000) 743 (https://doi.org/10.1016/S0223-5234(00)00157-4)

K. S. Bhat, B. Poojary, D. J. Prasad, P. Naik, B. S. Holla, Eur. J. Med. Chem. 44 (2009) 5066 (https://doi.org/10.1016/j.ejmech.2009.09.010)

B. S. Holla, B. Veerendra, M. K. Shivananda, B. Poojary, Eur. J. Med. Chem. 38 (2003) 759 (https://doi.org/10.1016/S0223-5234(03)00128-4)

S. Saha, D. Dhanasekaran, S. Chandraleka, N. Thajuddin, A. Panneerselvam, Adv. Biol. Res. 4 (2010) 224 (ISSN 1992-0067)

R. Iqbal, N. H. Rama, U. Yunus, A. Saeed, K. Zamani, J. Chem. Soc. Pak. 19 (1997) 145 (https://www.jcsp.org.pk/ArticleUpload/1910-8501-1-RV.pdf)

L. Fotouhi, F. Hajilari, M. M. Heravi, Electroanalysis 14 (2002) 1728 (https://doi.org/10.1002/elan.200290017)

H. Gökce, N. Öztürk, Ü. Ceylan, Y. B. Alpaslan, G. Alpaslan, Spectrochim. Acta, A 163 (2016) 170 (https://doi.org/10.1016/j.saa.2016.03.041)

R. G. Parr, W. Wang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, Oxford, 1989 (https://doi.org/10.1002/qua.560470107)

C. Lee, W. Yang, R. G. Parr, Phys. Rev., B: Condens. Matter Mater. Phys. 37 (1988) 785 (https://doi.org/10.1103/PhysRevB.37.785)

A. D. Becke, J. Chem. Phys. 98 (1993) 5648 (https://doi.org/10.1063/1.464913)

Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 41 (2008) 157 (https://doi.org/10.1021/ar700111a)

Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 120 (2008) 215 (https://doi.org/10.1007/s00214-007-0310-x)

T. H. Dunning, Jr., J. Chem. Phys. 90 (1989) 1007 (https://doi.org/10.1063/1.456153)

J. A. Montgomery, Jr., M. J. Frisch, J. W. Ochterski, G. A. Petersson, J. Chem. Phys. 112 (2000) 6532 (https://doi.org/10.1063/1.481224)

K. J. Laidler, M. C. King, J. Phys. Chem. 87 (1983) 2657 (https://doi.org/10.1021/j100238a002)

A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 83 (1985) 735 (https://doi.org/10.1063/1.449486)

J. K. Badenhoop, F. Weinhold, Int. J. Quantum Chem. 72 (1999) 269 (https://doi.org/10.1002/(SICI)1097-461X(1999)72:4<269::AID-QUA9>3.0.CO;2-8)

Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford, CT, 2009

R. Jasiński, Comput. Theor. Chem. 1046 (2014) 93 (https://doi.org/10.1016/j.comptc.2014.08.002)

R. Casasnovas, J. Frau, J. Ortega-Castro, A. Salvà, J. Donoso, F. Muñoz, Int. J. Quantum Chem. 110 (2010) 323 (https://doi.org/10.1002/qua.22170)

F. Fukui, J. Phys. Chem. 74 (1970) 4161 (https://doi.org/10.1021/j100717a029)

Z. Safaei, A. Shiroudi, R. Padash, M. Sillanpää, E. Zahedi, J. Fluorine Chem. 216 (2018) 71 (https://doi.org/10.1016/j.jfluchem.2018.10.009)

S. Canneaux, F. Bohr, E. Henon, J. Comput. Chem. 35 (2013) 82 (https://doi.org/10.1002/jcc.23470)

M. D. Allendorf, T. M. Besmann, R. J. Kee, M. T. Swihart, Chemical Vapor Deposition: Precursors, Processes and Applications, 1st ed., The Royal Society of Chemistry, London, 2009 (http://dx.doi.org/10.1039/9781847558794)

K. A. Holbrook, M. J. Pilling, S. H. Robertson, Unimolecular Reactions, 2nd ed., Wiley, Chichester, 1996 (ISBN 978-0-471-92268-1)

E. Wigner, J. Chem. Phys. 5 (1937) 720 (https://doi.org/10.1063/1.1750107)

E. P. Wigner, Z. Phys. Chem., Abt. B 19 (1932) 203 (https://doi.org/10.1515/zpch-1932-0120)

NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard References Database Number 101, section XIII.B.4a: Precomputed vibrational scaling factors, R. D. Johnson III, Ed. (http://cccbdb.nist.gov/vibscalejust.asp))

G. S. Hammond, J. Am. Chem. Soc. 77 (1953) 334 (https://doi.org/10.1021/ja01607a027)

N. Agmon, R. D. Levine, Chem. Phys. Lett. 52 (1977) 197 (https://doi.org/10.1016/0009-2614(77)80523-X)

G. Lendvay, J. Phys. Chem. 93 (1989) 4422 (https://doi.org/10.1021/j100348a011)

A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 88 (1988) 899 (https://doi.org/10.1021/cr00088a005)

K. B. Wiberg, Tetrahedron 24 (1968) 1083 (https://doi.org/10.1016/0040-4020(68)88057-3)

E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold, NBO version 3.1, Gaussian Inc., Pittsburgh, PA, 2003

A. Moyano, M. A. Periclas, E. Valenti, J. Org. Chem. 54 (1989) 573 (https://doi.org/10.1021/jo00264a014)

F. Rosas, R. M. Dominguez, M. Tosta, J. R. Mora, E. Marquez, T. Cordova, G. Chuchani, J. Phys. Org. Chem. 23 (2010) 743 (https://doi.org/10.1002/poc.1646)

J. E. Carpenter, F. Weinhold, J. Mol. Struct.: THEOCHEM 169 (1988) 41 (https://doi.org/10.1016/0166-1280(88)80248-3).

Most read articles by the same author(s)