DFT study and NBO analysis of solvation/substituent effects of 3-phenylbenzo[d]thiazole-2(3H)-imine derivatives

Marzieh Miar, Abolfazl Shiroudi, Khalil Pourshasian, Ahmed Reza Oliaey, Farhad Hatamjafari


In this work, to determine natural bond orbital (NBO) analysis, solvation and substituent effects for electron-releasing substituents (CH3, OH) and electron-withdrawing derivatives (Cl, NO2, CF3) in para positions on the molecular structure of the synthesized 3-phenylbenzo[d] thiazole-2(3H)-imine derivatives 1-6 [H (1), CH3 (2), Cl (3), OH (4), CF3 (5), NO2 (6)] in the selected solvents (acetone, toluene, and ethanol) and gas-phase employing polarizable continuum method (PCM) model were studied at the M06-2x/6-311++G(d,p) level of theory. The relative stability of the studied compounds was affected by the possibility of intramolecular interactions between substituents and the electron donor/acceptor centers of the thiazole ring. Furthermore, atomic charges electron density, chemical thermodynamics, energetic properties, dipole moments, and the nucleus-independent chemical shifts (NICS) of the studied compounds and their relative stability are considered. The dipole moment values and the HOMO-LUMO energy gap reveal the different charge transfer possibilities within the considered molecules. Frontier molecular orbital (FMO) analysis revealed that compound 6 has very small HOMO-LUMO energy gaps in the considered phases, and is thus kinetically less stable. The obtained HOMO-LUMO energy gap corresponds to intramolecular hyperconjugative interactions p→p*. Finally, NBO analysis is carried out to demonstrate the charge transfer between localized bonds and lone pairs.


thiazole; theoretical computations; DFT; PCM; NBO; solvent ef¬fects; dipole moment

Full Text:

PDF (2,104 kB)


M. Asif, Int. J. Bioorg. Chem. 2 (2017) 146 (https://doi.org/10.11648/j.ijbc.20170203.20)

M. Marzi, A. Shiroudi, K. Pourshamsian, A. R. Oliaey, F. Hatamjafari, J. Sulfur Chem. 40 (2019) 166 (https://doi.org/10.1080/17415993.2018.1548621)

M. Chhabra, S. Sinha, S. Banerjee, P. Paira, Bioorganic Med. Chem. Lett. 26 (2016) 213 (https://doi.org/10.1016/j.bmcl.2015.10.087)

J. Jiang, G. Li, F. Zhang, H. Xie, G. J. Deng, Adv. Synth. Catal. 360 (2018) 1622 (https://doi.org/10.1002/adsc.201701560)

M. G. Rabbani, T. Islamoglu, H. M. El-Kaderi, J. Mater. Chem. A 5 (2017) 258 (https://doi.org/10.1039/C6TA06342J)

R. K. Gill, R. K. Rawal, J. Bariwal, Arch. Pharm. 348 (2015) 155 (https://doi.org/10.1002/ardp.201400340)

P. C. Diao, W. Y. Lin, X. E. Jian, Y. H. Li, W. W. You, P. L. Zhao, Eur. J. Med. Chem. 179 (2019) 19 (10.1016/j.ejmech.2019.06.055)

M. A. Abdelgawad, R. B. Bakr, H. A. Omar, Bioorg. Chem. 74 (2017) 82 (https://doi.org/10.1016/j.bioorg.2017.07.007)

R. Ali, N. Siddiqui, J. Chem. 345198 (2013) (https://doi.org/10.1155/2013/345198)

D. Das, P. Sikdar, M. Bairagi, Eur. J. Med. Chem. 109 (2016) 89 (10.1016/j.ejmech.2015.12.022)

L. Shuai, J. Luterbacher, ChemSusChem 9 (2016) 133 (https://doi.org/10.1002/cssc.201501148)

L. Onsager, J. Am. Chem. Soc. 58 (1936) 1486 (https://doi.org/10.1021/ja01299a050)

L. Rivail, D. Rinaldi, Theoret. Chim. Acta 32 (1973) 57 (https://doi.org/10.1007/BF01209416)

R. J. Hall, M. M. Davidson, N. A. Burton, I. H. Hillier, J. Phys. Chem. 99 (1995) 921 (https://doi.org/10.1021/j100003a014)

Z. Felegari, M. Monajjemi, J. Theor. Comput. Chem. 14 (2015) 1550021 (https://doi.org/10.1142/S0219633615500212)

Y. Zhao, D.G. Truhlar, Theor. Chem. Acc. 120 (2008) 215 (https://doi.org/10.1007/s00214-007-0310-x)

T. H. Dunning Jr. J. Chem. Phys. 90 (1989) 1007 (https://doi.org/10.1063/1.456153)

S. Nigam, C. Majumder, S. K. Kulshreshtha, J. Chem. Sci. 118 (2006) 575 (https://doi.org/10.1007/BF02703955)

P. v. R. Schleyer, M. Manoharan, Z. X. Wang, B. Kiran, H. J. Jiao, R. Puchta, N. Hommes, Org. Lett. 3 (2001) 2465 (https://doi.org/10.1021/ol016217v)

P. v. R. Schleyer, H. Jiao, B. Goldfuss, P. K. Freeman, Angew. Chem. Int. Ed. Engl. 34 (1995) 337 (https://doi.org/10.1002/anie.199503371)

P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. V. E. Hommes, J. Am. Chem. Soc. 118 (1996) 6317 (https://doi.org/10.1021/ja960582d)

A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 83 (1985) 735 (https://doi.org/10.1063/1.449486)

J. K. Badenhoop, F. Weinhold, Int. J. Quantum. Chem. 72 (1999) 269 (https://doi.org/10.1002/(SICI)1097-461X(1999)72:4<269::AID-QUA9>3.0.CO;2-8)

Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT, 2009

GaussView5.0.9 Gaussian, Inc. Wallingford, CT

E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, F. Weinhold, NBO 5.0., Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2001.

I. M. Alecu, J. Zheng, Y. Zhao, D. G. Truhlar, J. Chem. Theory Comput. 6 (2010) 2872 (https://doi.org/10.1021/ct100326h)

K. Fukui, T. Yonezawa, H. Shingu, J. Chem. Phys. 20 (1952) 722 (https://doi.org/10.1063/1.1700523)

L. Padmaja, C. Ravi Kumar, D. Sajan, I. H. Joe, V. S. Jayakumar, G. R. Pettit, J. Raman Spectrosc. 40 (2009) 419 (https://doi.org/10.1002/jrs.2145)

J. Aihara, J. Phys. Chem. A 103 (1999) 7487 (https://doi.org/10.1021/jp990092i)

Y. Ruiz-Morales, J. Phys. Chem. A 106 (2002) 11283 (https://doi.org/10.1021/jp021152e)

R. G. Parr, L. Szentpaly, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922 (https://doi.org/10.1021/ja983494x)

R. G. Parr, R. G. Pearson, J. Am. Chem. Soc. 105 (1983) 7512 (https://doi.org/10.1021/ja00364a005)

R. G. Parr, R. A. Donnelly, M. Levy, W. E. Palke, J. Chem. Phys. 68 (1978) 3801 (https://doi.org/10.1063/1.436185)

Y. Yang, W. Zhang, X. Gao, Int. J. Quantum Chem. 106 (2006) 1199 (https://doi.org/10.1002/qua.20873)

J. E. Carpenter, F. Weinhold, J. Mol. Struct.: Theochem 169 (1988) 41 (https://doi.org/10.1016/0166-1280(88)80248-3)

A. R. Oliaey, A. Shiroudi, E. Zahedi, M. S. Deleuze, React. Kinet. Mech. Cat. 124 (2018) 27 (https://doi.org/10.1007/s11144-017-1332-6)

P. v. R. Schleyer, H. Jiao, Pure Appl. Chem. 68 (1996) 209 (http://dx.doi.org/10.1351/pac199668020209)

T. M. Krygowski, M. Cyranski, A. Ciesielski, B. Swirska, P. Leszczynski, J. Chem. Inf. Comput. Sci. 36 (1996) 1135 (https://doi.org/10.1021/ci960367g)

S. Badoglu, S. Yurdakul, Struct. Che. 21 (2010) 1103 (https://doi.org/10.1007/s11224-010-9651-5)

DOI: https://doi.org/10.2298/JSC200421058M

Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

5 Year Impact Factor 1.023
138 of 177 journals)