DFT study and NBO analysis of solvation/substituent effects of 3-phenylbenzo[d]thiazole-2(3H)-imine derivatives


  • Marzieh Miar Chemistry Department, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
  • Abolfazl Shiroudi Young Researchers and Elite Club, East Tehran Branch, Islamic Azad University, Tehran, Iran
  • Khalil Pourshasian Chemistry Department, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
  • Ahmed Reza Oliaey Chemistry Department, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
  • Farhad Hatamjafari Chemistry Department, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran




thiazole, theoretical computations, DFT, PCM, NBO, solvent effects, dipole moment


In this work, to determine natural bond orbital (NBO) analysis, solvation and substituent effects for electron-releasing substituents (CH3, OH) and electron-withdrawing derivatives (Cl, NO2, CF3) in para positions on the molecular structure of the synthesized 3-phenylbenzo[d]thiazole-2(3H)-imine derivatives 1-6 (H (1), CH3 (2), Cl (3), OH (4), CF3 (5), NO2 (6)) in the sel­ected solvents (acetone, toluene, and ethanol) and gas-phase employing pola­rizable continuum method (PCM) model were studied at the M06-2x/6-311++G(d,p) level of theory. The relative stability of the studied compounds was affected by the possibility of intramolecular interactions between sub­stituents and the electron donor/acceptor centers of the thiazole ring. Further­more, atomic charges electron density, chemical thermodynamics, energetic properties, dipole moments, and the nucleus-independent chemical shifts (NICS) of the studied compounds and their relative stability are considered. The dipole moment values and the HOMO–LUMO energy gap reveal the different charge transfer possibilities within the considered molecules. Frontier molecular orbital (FMO) analysis revealed that compound 6 has very small HOMO-LUMO energy gaps in the considered phases, and thus is kinetically less stable. The obtained HOMO-LUMO energy gap corresponds to intramole­cular hyperconjugative interactions p®p*. Finally, NBO analysis is carried out to demonstrate the charge transfer between localized bonds and lone pairs.


M. Asif, Int. J. Bioorg. Chem. 2 (2017) 146 (https://doi.org/10.11648/j.ijbc.20170203.20)

M. Marzi, A. Shiroudi, K. Pourshamsian, A. R. Oliaey, F. Hatamjafari, J. Sulfur Chem. 40 (2019) 166 (https://doi.org/10.1080/17415993.2018.1548621)

M. Chhabra, S. Sinha, S. Banerjee, P. Paira, Bioorg. Med. Chem. Lett. 26 (2016) 213 (https://doi.org/10.1016/j.bmcl.2015.10.087)

J. Jiang, G. Li, F. Zhang, H. Xie, G. J. Deng, Adv. Synth. Catal. 360 (2018) 1622 (https://doi.org/10.1002/adsc.201701560)

M. G. Rabbani, T. Islamoglu, H. M. El-Kaderi, J. Mater. Chem., A 5 (2017) 258 (https://doi.org/10.1039/C6TA06342J)

R. K. Gill, R. K. Rawal, J. Bariwal, Arch. Pharm. 348 (2015) 155 (https://doi.org/10.1002/ardp.201400340)

P. C. Diao, W. Y. Lin, X. E. Jian, Y. H. Li, W. W. You, P. L. Zhao, Eur. J. Med. Chem. 179 (2019) 19 (10.1016/j.ejmech.2019.06.055)

M. A. Abdelgawad, R. B. Bakr, H. A. Omar, Bioorg. Chem. 74 (2017) 82 (https://doi.org/10.1016/j.bioorg.2017.07.007)

R. Ali, N. Siddiqui, J. Chem. (2013) 345198 (https://doi.org/10.1155/2013/345198)

D. Das, P. Sikdar, M. Bairagi, Eur. J. Med. Chem. 109 (2016) 89 (10.1016/j.ejmech.2015.12.022)

L. Shuai, J. Luterbacher, ChemSusChem 9 (2016) 133 (https://doi.org/10.1002/cssc.201501148)

L. Onsager, J. Am. Chem. Soc. 58 (1936) 1486 (https://doi.org/10.1021/ja01299a050)

L. Rivail, D. Rinaldi, Theor. Chim. Acta 32 (1973) 57 (https://doi.org/10.1007/BF01209416)

R. J. Hall, M. M. Davidson, N. A. Burton, I. H. Hillier, J. Phys. Chem. 99 (1995) 921 (https://doi.org/10.1021/j100003a014)

Z. Felegari, M. Monajjemi, J. Theor. Comput. Chem. 14 (2015) 1550021 (https://doi.org/10.1142/S0219633615500212)

Y. Zhao, D.G. Truhlar, Theor. Chem. Acc. 120 (2008) 215 (https://doi.org/10.1007/s00214-007-0310-x)

T. H. Dunning, Jr., J. Chem. Phys. 90 (1989) 1007 (https://doi.org/10.1063/1.456153)

S. Nigam, C. Majumder, S. K. Kulshreshtha, J. Chem. Sci. 118 (2006) 575 (https://doi.org/10.1007/BF02703955)

P. v. R. Schleyer, M. Manoharan, Z. X. Wang, B. Kiran, H. J. Jiao, R. Puchta, N. Hommes, Org. Lett. 3 (2001) 2465 (https://doi.org/10.1021/ol016217v)

P. v. R. Schleyer, H. Jiao, B. Goldfuss, P. K. Freeman, Angew. Chem. Int. Ed. Engl. 34 (1995) 337 (https://doi.org/10.1002/anie.199503371)

P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. V. E. Hommes, J. Am. Chem. Soc. 118 (1996) 6317 (https://doi.org/10.1021/ja960582d)

A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 83 (1985) 735 (https://doi.org/10.1063/1.449486)

J. K. Badenhoop, F. Weinhold, Int. J. Quantum. Chem. 72 (1999) 269 (https://doi.org/10.1002/(SICI)1097-461X(1999)72:4<269::AID-QUA9>3.0.CO;2-8)

Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford, CT, 2009

GaussView5.0.9, Gaussian, Inc., Wallingford, CT

E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, F. Weinhold, NBO 5.0., Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2001

I. M. Alecu, J. Zheng, Y. Zhao, D. G. Truhlar, J. Chem. Theory Comput. 6 (2010) 2872 (https://doi.org/10.1021/ct100326h)

K. Fukui, T. Yonezawa, H. Shingu, J. Chem. Phys. 20 (1952) 722 (https://doi.org/10.1063/1.1700523)

L. Padmaja, C. Ravi Kumar, D. Sajan, I. H. Joe, V. S. Jayakumar, G. R. Pettit, J. Raman Spectrosc. 40 (2009) 419 (https://doi.org/10.1002/jrs.2145)

J. Aihara, J. Phys. Chem., A 103 (1999) 7487 (https://doi.org/10.1021/jp990092i)

Y. Ruiz-Morales, J. Phys. Chem., A 106 (2002) 11283 (https://doi.org/10.1021/jp021152e)

R. G. Parr, L. Szentpaly, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922 (https://doi.org/10.1021/ja983494x)

R. G. Parr, R. G. Pearson, J. Am. Chem. Soc. 105 (1983) 7512 (https://doi.org/10.1021/ja00364a005)

R. G. Parr, R. A. Donnelly, M. Levy, W. E. Palke, J. Chem. Phys. 68 (1978) 3801 (https://doi.org/10.1063/1.436185)

Y. Yang, W. Zhang, X. Gao, Int. J. Quantum Chem. 106 (2006) 1199 (https://doi.org/10.1002/qua.20873)

J. E. Carpenter, F. Weinhold, J. Mol. Struct., Theochem 169 (1988) 41 (https://doi.org/10.1016/0166-1280(88)80248-3)

A. R. Oliaey, A. Shiroudi, E. Zahedi, M. S. Deleuze, React. Kin. Mech. Catal. 124 (2018) 27 (https://doi.org/10.1007/s11144-017-1332-6)

P. v. R. Schleyer, H. Jiao, Pure Appl. Chem. 68 (1996) 209 (http://dx.doi.org/10.1351/pac199668020209)

T. M. Krygowski, M. Cyranski, A. Ciesielski, B. Swirska, P. Leszczynski, J. Chem. Inf. Comput. Sci. 36 (1996) 1135 (https://doi.org/10.1021/ci960367g)

S. Badoglu, S. Yurdakul, Struct. Chem. 21 (2010) 1103 (https://doi.org/10.1007/s11224-010-9651-5).



How to Cite

M. Miar, A. Shiroudi, K. Pourshasian, A. R. Oliaey, and F. Hatamjafari, “DFT study and NBO analysis of solvation/substituent effects of 3-phenylbenzo[d]thiazole-2(3H)-imine derivatives”, J. Serb. Chem. Soc., vol. 85, no. 11, pp. 1445-1462, Nov. 2020.



Theoretical Chemistry

Most read articles by the same author(s)