DFT study and NBO analysis of solvation/substituent effects of 3-phenylbenzo[d]thiazole-2(3H)-imine derivatives
Main Article Content
Abstract
In this work, to determine natural bond orbital (NBO) analysis, solvation and substituent effects for electron-releasing substituents (CH3, OH) and electron-withdrawing derivatives (Cl, NO2, CF3) in para positions on the molecular structure of the synthesized 3-phenylbenzo[d]thiazole-2(3H)-imine derivatives 1-6 (H (1), CH3 (2), Cl (3), OH (4), CF3 (5), NO2 (6)) in the selected solvents (acetone, toluene, and ethanol) and gas-phase employing polarizable continuum method (PCM) model were studied at the M06-2x/6-311++G(d,p) level of theory. The relative stability of the studied compounds was affected by the possibility of intramolecular interactions between substituents and the electron donor/acceptor centers of the thiazole ring. Furthermore, atomic charges electron density, chemical thermodynamics, energetic properties, dipole moments, and the nucleus-independent chemical shifts (NICS) of the studied compounds and their relative stability are considered. The dipole moment values and the HOMO–LUMO energy gap reveal the different charge transfer possibilities within the considered molecules. Frontier molecular orbital (FMO) analysis revealed that compound 6 has very small HOMO-LUMO energy gaps in the considered phases, and thus is kinetically less stable. The obtained HOMO-LUMO energy gap corresponds to intramolecular hyperconjugative interactions p®p*. Finally, NBO analysis is carried out to demonstrate the charge transfer between localized bonds and lone pairs.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
M. Asif, Int. J. Bioorg. Chem. 2 (2017) 146 (https://doi.org/10.11648/j.ijbc.20170203.20)
M. Marzi, A. Shiroudi, K. Pourshamsian, A. R. Oliaey, F. Hatamjafari, J. Sulfur Chem. 40 (2019) 166 (https://doi.org/10.1080/17415993.2018.1548621)
M. Chhabra, S. Sinha, S. Banerjee, P. Paira, Bioorg. Med. Chem. Lett. 26 (2016) 213 (https://doi.org/10.1016/j.bmcl.2015.10.087)
J. Jiang, G. Li, F. Zhang, H. Xie, G. J. Deng, Adv. Synth. Catal. 360 (2018) 1622 (https://doi.org/10.1002/adsc.201701560)
M. G. Rabbani, T. Islamoglu, H. M. El-Kaderi, J. Mater. Chem., A 5 (2017) 258 (https://doi.org/10.1039/C6TA06342J)
R. K. Gill, R. K. Rawal, J. Bariwal, Arch. Pharm. 348 (2015) 155 (https://doi.org/10.1002/ardp.201400340)
P. C. Diao, W. Y. Lin, X. E. Jian, Y. H. Li, W. W. You, P. L. Zhao, Eur. J. Med. Chem. 179 (2019) 19 (10.1016/j.ejmech.2019.06.055)
M. A. Abdelgawad, R. B. Bakr, H. A. Omar, Bioorg. Chem. 74 (2017) 82 (https://doi.org/10.1016/j.bioorg.2017.07.007)
R. Ali, N. Siddiqui, J. Chem. (2013) 345198 (https://doi.org/10.1155/2013/345198)
D. Das, P. Sikdar, M. Bairagi, Eur. J. Med. Chem. 109 (2016) 89 (10.1016/j.ejmech.2015.12.022)
L. Shuai, J. Luterbacher, ChemSusChem 9 (2016) 133 (https://doi.org/10.1002/cssc.201501148)
L. Onsager, J. Am. Chem. Soc. 58 (1936) 1486 (https://doi.org/10.1021/ja01299a050)
L. Rivail, D. Rinaldi, Theor. Chim. Acta 32 (1973) 57 (https://doi.org/10.1007/BF01209416)
R. J. Hall, M. M. Davidson, N. A. Burton, I. H. Hillier, J. Phys. Chem. 99 (1995) 921 (https://doi.org/10.1021/j100003a014)
Z. Felegari, M. Monajjemi, J. Theor. Comput. Chem. 14 (2015) 1550021 (https://doi.org/10.1142/S0219633615500212)
Y. Zhao, D.G. Truhlar, Theor. Chem. Acc. 120 (2008) 215 (https://doi.org/10.1007/s00214-007-0310-x)
T. H. Dunning, Jr., J. Chem. Phys. 90 (1989) 1007 (https://doi.org/10.1063/1.456153)
S. Nigam, C. Majumder, S. K. Kulshreshtha, J. Chem. Sci. 118 (2006) 575 (https://doi.org/10.1007/BF02703955)
P. v. R. Schleyer, M. Manoharan, Z. X. Wang, B. Kiran, H. J. Jiao, R. Puchta, N. Hommes, Org. Lett. 3 (2001) 2465 (https://doi.org/10.1021/ol016217v)
P. v. R. Schleyer, H. Jiao, B. Goldfuss, P. K. Freeman, Angew. Chem. Int. Ed. Engl. 34 (1995) 337 (https://doi.org/10.1002/anie.199503371)
P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. V. E. Hommes, J. Am. Chem. Soc. 118 (1996) 6317 (https://doi.org/10.1021/ja960582d)
A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 83 (1985) 735 (https://doi.org/10.1063/1.449486)
J. K. Badenhoop, F. Weinhold, Int. J. Quantum. Chem. 72 (1999) 269 (https://doi.org/10.1002/(SICI)1097-461X(1999)72:4<269::AID-QUA9>3.0.CO;2-8)
Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford, CT, 2009
GaussView5.0.9, Gaussian, Inc., Wallingford, CT
E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, F. Weinhold, NBO 5.0., Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2001
I. M. Alecu, J. Zheng, Y. Zhao, D. G. Truhlar, J. Chem. Theory Comput. 6 (2010) 2872 (https://doi.org/10.1021/ct100326h)
K. Fukui, T. Yonezawa, H. Shingu, J. Chem. Phys. 20 (1952) 722 (https://doi.org/10.1063/1.1700523)
L. Padmaja, C. Ravi Kumar, D. Sajan, I. H. Joe, V. S. Jayakumar, G. R. Pettit, J. Raman Spectrosc. 40 (2009) 419 (https://doi.org/10.1002/jrs.2145)
J. Aihara, J. Phys. Chem., A 103 (1999) 7487 (https://doi.org/10.1021/jp990092i)
Y. Ruiz-Morales, J. Phys. Chem., A 106 (2002) 11283 (https://doi.org/10.1021/jp021152e)
R. G. Parr, L. Szentpaly, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922 (https://doi.org/10.1021/ja983494x)
R. G. Parr, R. G. Pearson, J. Am. Chem. Soc. 105 (1983) 7512 (https://doi.org/10.1021/ja00364a005)
R. G. Parr, R. A. Donnelly, M. Levy, W. E. Palke, J. Chem. Phys. 68 (1978) 3801 (https://doi.org/10.1063/1.436185)
Y. Yang, W. Zhang, X. Gao, Int. J. Quantum Chem. 106 (2006) 1199 (https://doi.org/10.1002/qua.20873)
J. E. Carpenter, F. Weinhold, J. Mol. Struct., Theochem 169 (1988) 41 (https://doi.org/10.1016/0166-1280(88)80248-3)
A. R. Oliaey, A. Shiroudi, E. Zahedi, M. S. Deleuze, React. Kin. Mech. Catal. 124 (2018) 27 (https://doi.org/10.1007/s11144-017-1332-6)
P. v. R. Schleyer, H. Jiao, Pure Appl. Chem. 68 (1996) 209 (http://dx.doi.org/10.1351/pac199668020209)
T. M. Krygowski, M. Cyranski, A. Ciesielski, B. Swirska, P. Leszczynski, J. Chem. Inf. Comput. Sci. 36 (1996) 1135 (https://doi.org/10.1021/ci960367g)
S. Badoglu, S. Yurdakul, Struct. Chem. 21 (2010) 1103 (https://doi.org/10.1007/s11224-010-9651-5).