Biodegradation of cotton fabric impregnated with TiO2 nanoparticles

Main Article Content

Darka Marković
Jelena Vasiljević
Barbara Golja
Brigita Tomšič
Barbara Simončić
Maja Radetić

Abstract

Commercial P25 TiO2 nanoparticles are widely exploited as an effi­cient photocatalyst. In the textile domain, these nanoparticles are used for the production of self-cleaning, highly UV protective textiles, with an antimic­robial activity. The disposed textile products may end up in a landfill where they are subjected to the biodegradation process. Considering the importance of the later, this study discusses the biodegradation behaviour of cotton fabric impregnated with commercial P25 TiO2 nanoparticles. Photo­cata­lytic activity of TiO2 nanoparticles immobilized on cotton fabric was proved by the photo­deg­rad­ation of dyes C.I. Acid Orange 7 and methylene blue in aqueous sol­ution. Biodegradation of fabrics was assessed by soil burial test in periods of 3, 9 and 18 days. Chemical and morphological changes induced by biodegra­da­tion were analyzed by FTIR, SEM and EDS. A colour of the samp­les gradually changed from white to yellow/brown due to rotting. SEM analysis revealed a severe destruction of the control and impregnated cotton fibres after 18 days of soil burial which was in line with visual appearance of completely damaged fabrics. The results confirmed that biodegradation behaviour of both the control and impregnated sample was equivalent, indi­cating that P25 TiO2 nanoparticles did not inhibit the biodegradation process of cellulose.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
D. Marković, J. Vasiljević, B. Golja, B. Tomšič, B. Simončić, and M. Radetić, “Biodegradation of cotton fabric impregnated with TiO2 nanoparticles”, J. Serb. Chem. Soc., vol. 84, no. 7, pp. 743–755, Jul. 2019.
Section
Environmental Chemistry

References

M. Radetić, J. Mater. Sci. 48 (2013) 95 (https://doi.org/10.1007%2Fs10853-012-6677-7)

Z. Zhang, W. Shen, J. Xue, Y. Liu, Y. Liu, P. Yan, J. Liu, Nanoscale Res. Lett. 1 (2018) 54 (https://doi.org/10.1186/s11671-018-2450-4)

F. Zhang, X. Wu, Y. Chen, H. Lin, Fiber. Polym. 10 (2009) 496 (https://doi.org/10.1007%2Fs12221-009-0496-8)

M. Radetić, J. Photochem. Photobiol., C 16 (2013) 62 https://doi.org/10.1016/j.jphotochemrev.2013.04.002

F. Emmami, S. Shekarriz, Z. Shariatinia, Z. M. Mahdieh, Fiber. Polym. 19 (2018) 1014 (https://doi.org/10.1007%2Fs12221-018-1025-4)

E. Pakdel, W. A. Daoud, T. Afrin, L. Sun, X. Wang, Cellulose 24 (2017) 4003 (https://doi.org/10.1007/s10570-017-1374-y)

B. Ohtani, O. O. Prieto-Mahaney, D. Li, R. Abe, J. Photochem. Photobiol., A 216 (2010) 179 (https://doi.org/10.1016/j.jphotochem.2010.07.024)

G. Li, C. Richter, R. L. Milot, L. Cai, C. A. Schmuttenmaer, R. H. Crabtree, G. W. Bru¬dvig, V. S. Batista, Dalton Trans. 45 (2009) 10078 (https://doi.org/10.1039/b908686b)

D. C. Hurum, A. G. Agrios, S. E. Crist, K. A. Gray, T. Rajh, M. C. Thurnauer, J. Electron Spectrosc. Relat. Phenom. 150 (2006) 155 (https://doi.org/10.1016/j.elspec.2005.01.294)

E. Navarro, A. Baun, R. Behra, N. B. Hartmann, J. Filser, A.J. Miao, A. Quigg, P. H. Santschi, L. Sigg, Ecotoxicology 17(2008) 372 (https://doi.org/10.1007/s10646-008-0214-0)

G. E. Schaumann, A. Philippe, M. Bundschuh, G. Metreveli, S. Klitzke, D. Rakcheev, A. Grün, S. K. Kumahor, M. Kühn, T. Baumann, F. Lang, W. Manz, R. Schulz, H. J. Vogel, Sci. Total Environ. 535 (2015) 3 (https://doi.org/10.1016/j.scitotenv.2014.10.035)

D. Klemenčič, B. Simončič, B. Tomšič, and B. Orel, Carbohyd. Polym. 80 (2010) 426 (http://dx.doi.org/10.1016/j.carbpol.2009.11.049)

B. Tomšič, D. Klemenčić, B. Simončič, B. Orel, Polym. Degrad. Stabil., 96 (2011) 1286 (http://dx.doi.org/10.1016/j.polymdegradstab.2011.04.004)

V. Lazić, M. Radoičić, Z. Šaponjić, T. Radetić, V. Vodnik, S. Nikolić, S. Dimitrijević, M. Radetić, Cellulose 22 (2015) 1365 (https://doi.org/10.1007%2Fs10570-015-0549-7)

M. Milošević, A. Krkobabić, M. Radoičić, Z. Šaponjić, T. Radetić, M. Radetić, Carbohyd. Polym. 158 (2017) 77 (https://doi.org/10.1016/j.carbpol.2016.12.006)

B. Tomšič, J. Vasiljević, B. Simončič, M. Radoičić, M. Radetić, Cellulose 24 (2017) 4533 (https://doi.org/10.1007%2Fs10570-017-1415-6)

H. M. M. Ibrahim, M. S. Hassan, Carbohyd. Polym. 151 (2016) 841 (https://doi.org/10.1016/j.carbpol.2016.05.041)

C. H. Park, Y. K. Kang, S. S. Im, J. Appl. Polym. Sci. 94 (2004) 248 (https://doi.org/10.1002/app.20879)

M. Radetić, V. Ilić, V. Vodnik, S. Dimitrijević, P. Jovančić, Z. Šaponjić, J. Nedeljković, Polym. Adv. Technol. 19 (2008) 1816 (https://doi.org/10.1002/pat.1205)

E. Chibowski, F. Gonzales-Caballero, Langmuir 9 (1993) 330 (https://doi.org/10.1021/la00025a062)

D. Sun, G. Stylios, Text. Res. J. 74 (2004) 751 (https://doi.org/10.1177/004051750407400901)

M. Abbas, H. Iftihkar, M. H. Malik, A. Nazir, Coatings 8 (2018) 35 (https://doi.org/10.3390/coatings8010035)

G. Primc, B. Tomšič, A. Vesel, M. Mozetič, S. Ercegović Ražić, M. Gorjanc, J. Phys., D 49 (2016) 324002 (http://dx.doi.org/10.1088/0022-3727/49/32/324002)

L. V. Zhukova, J. Kiwi, V. V. Nikandrov, Colloids Surfaces, B 97 (2012) 240 (https://doi.org/10.1016/j.colsurfb.2012.03.010)

S. Dalai, S. Pakrashi, R.S.S. Kumar, N. Chandrasekaran, A. Mukherjee, Toxicol. Res. 1 (2012) 116 (https://doi.org/10.1039/C2TX00012A)

J. Szostak-Kotowa, Int. Biodeter. Biodegr. 53 (2004) 165 (https://doi.org/10.1016/S0964-8305(03)00090-8)

M. L. Nelson, R. T. OConnor, J. Appl. Polym. Sci. 8 (1964) 1325 (https://doi.org/10.1002/app.1964.070080323)

R. T. OConnor, E. F. DuPre, D. Mitcham, Text. Res. J. 28 (1958) 382

(https://doi.org/10.1177%2F004051755902900411)

S. H. D. Hulleman, J. M. van Hazendonk, J. E. G. van Dam, Carbohyd. Res. 261(1994) 163 (https://doi.org/10.1016/0008-6215(94)80015-4).