New mixed-ligand Ni(II) and Zn(II) macrocyclic complexes with bridged (endo,endo)-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylate: Synthesis, characterization, antimicrobial and cytotoxic activity

Main Article Content

Mirjana Antonijević Nikolić
Branka Dražić
Jelena Antić Stanković
Slađana Tanasković

Abstract

New carboxylate complexes of the tetraazamacrocyclic ligand N,N',N'',N'''-tetrakis(2-pyridilmethyl)-1,4,8,11-tetraazacyclotetradecane (tpmc) with Ni(II) and Zn(II) as central ions were prepared. In mixed-ligand com­plexes (endo,endo)-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylate dianion (C9H8O42-) is also coordinated to metal ions. The complexes were characterized by ele­men­tal analysis (C, H, N), FTIR and UV–Vis spectroscopy, molar conductivity determination and magnetic susceptibility measurement at room temperature. The analytical data of the complexes show the formation of binuclear [Ni2(C9H8O4)tpmc](ClO4)2·4H2O and tetranuclear [Zn4(C9H8O4)(tpmc)2](ClO4)6· ·CH3CN·KClO4·4H2O complexes. In tetranuclear Zn(II) complex bicyclic dicarboxylate ligand is most likely to be bridge coordinated, and in binuclear Ni(II) complex it is coordinated in a combined bridged manner with chelate rings formation. In both complexes macrocyclic ligand was exo coordinated, out of cyclam ring and adopts a boat conformation. The Zn(II) complex is one of the rare tetranuclear Zn(II)-tpmc complexes with carboxylate ion bridging two Zn2tpmc units. The complexes were tested for antibacterial activity against Gram-positive bacteria Staphylococcus aureus (ATCC 25923) and Bacillus subtilis (ATCC 6633), Gram-negative bacterium Escherichia coli (ATCC 25922), and yeast Candida albicans (ATCC 10231), and were screened for antiproliferative activity against human cervix adenocarcinoma (HeLa) and human myelogenous leukemia (K562) cell lines.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. Antonijević Nikolić, B. Dražić, J. Antić Stanković, and S. Tanasković, “New mixed-ligand Ni(II) and Zn(II) macrocyclic complexes with bridged (endo,endo)-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylate: Synthesis, characterization, antimicrobial and cytotoxic activity”, J. Serb. Chem. Soc., vol. 84, no. 9, pp. 961–973, Oct. 2019.
Section
Inorganic Chemistry

References

I.-T. Lim, K.-Y. Choi, Int. J. Mol. Sci. 12 (2011) 2232 (https://dx.doi.org/10.3390/ijms12042232)

W. Ma, Y.-P. Tian, S.-Y. Zhang, J.-Y. Wu, H.-K. Fun, Transition Met. Chem. 31 (2006) 97 (https://dx.doi.org/10.1007/s11243-005-6336-9)

S. Verma, S. Chandra, U. Dev, N. Joshi, Spectrochim. Acta, A 74 (2009) 370 (https://dx.doi.org/10.1016/j.saa.2009.06.029)

S. Chandra, K. Gupta, Transition Met. Chem. 27 (2002) 196 (https://dx.doi.org/10.1023/A:101393560)

P. M. Reddy, R. Rohini, E. R. Krishna, A. Hu, V. Ravinder, Int. J. Mol. Sci. 13 (2012) 4982 (https://dx.doi.org/10.3390/ijms13044982)

A. Dalla Cort, P. De Bernadin, G. Forte, F. Yafteh, Chem. Soc. Rev. 39 (2010) 3863 (http://dx.doi.org/10.1039/B926222A)

A. Majumder, G. M. Rosair, A. Mallick, N. Chattopadhyay, S. Mitra, Polyhedron 25 (2006) 1753 (http://dx.doi.org/10.1016/j.poly.2005.11.029).

C. T. Liu, A. A. Neverov, R. S. Brown, J. Am. Chem. Soc. 130 (2008) 13870 (http://dx.doi.org/10.1021/ja805801j)

S. J. Hosseinimehr, S. Emami, S. M. Taghdisi, S. Askhiaghpoor, Eur. J. Med. Chem. 43 (2008) 557 (https://dx.doi.org/10.1016/j.ejmech.2007.04.013)

Y. Q. Liu, X. M. Luo, H. J. Jiang, Z. Q. Zhang, Russ. J. Coord. Chem. 44 (2018) 317 (https://dx.doi.org/10.1134/S1070328418050032)

a) S. Liu, W. Cao, L. Yu, W. Zheng, L. Li, C. Fan, T. Chen, Dalton Trans. 42 (2013) 5932 (http://dx.doi.org/10.1039/C3DT33077J) b) M. Tyagi, S. Chandra, J. Saudi Chem. Soc. 18 (2014) 53 (http://dx.doi.org/10.1016/j.jscs.2011.05.013)

Z. M. Miodragović, G. Vučković, V. M. Leovac, V. M. Buzash, Synth. React. Inorg.

Met-Org. Chem. 30 (2000) 57 (https://dx.doi.org/10.1080/00945710009351747)

Z. M. Miodragović, G. Vučković, S. P. Sovilj, D. D. Manojlović, M. J. Malinar, J. Serb. Chem. Soc. 63 (1998) 781

Z. M. Miodragović, G. Vučković, V. M. Leovac, J. Serb. Chem. Soc. 66 (2001) 597

S. Chandrasekhar, W. L. Waltz, L. Prasad, J. W. Quail, Can. J. Chem. 75 (1997) 1363 (https://dx.doi.org/10.1139/v97-164)

G. Vučković, E. Asato, N. Matsumoto, S. Kida, Inorg. Chim. Acta 171 (1990) 45 (https://dx.doi.org/10.1016/S0020-1693(00)84662-9)

E. Konig, Magnetic Properties of Coordination and Organometallic Transition Metal Compounds, Springer-Verlag, Berlin, 1966, p. 24 (ISBN: 978-3-540-03593-0)

Clinical and Laboratory Standards Institute (CLSI), Performance standards for antimicrobial susceptibility testing, in: 17th Informational Supplement. Approved Standard. CLSI document M100-S17. Wayne, PA, 2007

M. Antonijević Nikolić, J. Antić Stanković, S. Tanasković, J. Coord. Chem. 71 (2018) 1542 ((https://dx.doi.org/10.1080/00958972.2018.1459581)

T. Mosmann, J. Immunol. Methods 65 (1983) 55

W.J. Geary, Coord. Chem. Rev. 7 (1971) 81 (https://dx.doi.org/10.1016/S0010-8545(00)80009-0)

M. Antonijević-Nikolić, J. Antić-Stanković, S. B. Tanasković, M. J. Korabik, G.

Gojgić-Cvijović, G. Vučković, J. Mol. Struct. 1054–1055 (2013) 297 (http://dx.doi.org/10.1016/j.molstruc.2013.10.006)

A. B. P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, 1984

A. Osowole, Int. J. Inorg. Chem. 2011 (2011) 1 (http://dx.doi.org/10.1155/2011/650186)

S. S. Tandon, S. Chander, L. K. Thompson, Inorg. Chim. Acta 300–302 (2000) 683 (https://dx.doi.org/10.1016/S0020-1693(00)00010-4)

H. Keypour, S. Salehzadeh, R.G. Pritchard, R.V. Parish, Polyhedron 19 (2000) 1633 (https://dx.doi.org/10.1016/S0277-5387(00)00444-7)

K. Nakamoto, Applications in Coordination Chemistry, in Infrared and Raman Spectra of Inorganic and Organic Coordination Compounds, Part B, 5th ed., Wiley-Interscience, New York, 1997, p. 55 (ISBN:978-0-471-74493-1)

G. B. Deacon, R. J. Philips, Coord. Chem. Rev. 33 (1980) 227 (https://dx.doi.org/10.1016/S0010-8545(00)80455-5)

M. Balouiri, M. Moulay Sadiki, S. Koraichi Ibnsouda, J. Pharm. Anal. 6 (2016) 71 (https://dx.doi.org/10.1016/j.jpha.2015.11.005)

E. Tacconelli, N. Magrini, Global Priority List of Antibiotic Resistant Bacteria to Guide Research, Discovery and Development of New Antibiotics, World Health Organization publications, 2017

A. L. Demain, S. Sanchez, J. Antibiot. 62 (2009) 5 (https://dx.doi.org/10.1038/ja.2008.16)

M. N. Patel, P. B. Pansuriya, P. A. Parmar, D. S. Gandhi, Pharm. Chem. J. 42 (2008) 687 (https://dx.doi.org/10.1007/s11094-009-0214-2)

T. M. Fasina, O. Ogundele, F. N. Ejiah, C. U. Dueje- Eze, Int. J. Biol. Chem. 6 (2012) 24 (https://dx.doi.org/10.3923/ijbc.2012.24.30)

E. Pahontu, D. C. Ilies, S. Shova, C. Oprean, V. Paunescu, O. T. Olaru, F. S. Radulescu, A. Gulea, T. Rosu, D. Draganescu, Molecules 22 (2017) 650 (https://dx.doi.org/10.3390/molecules22040650)

a) F. Sevgi, U. Bagkesici, A. N. Kursunlu, E. Guler, J. Mol. Struct. 1154 (2018) 256 (https://dx.doi.org/10.1016/j.molstruc.2017.10.052); b) F. Islam, A. Hossain, N. M. Shah, H. T. Barua, A. Kabir, M. J. Khan, R. Mullick, J. Chem. 2015 (2015) 8 (http://dx.doi.org/10.1155/2015/525239); c) A. Buschini, S. Pinelli, C. Pellakani, F. Giordani, M. B. Ferrari, F. Bisceglie, M. Giannetto, G. Pelosi, P. Tarasconi, J. Inorg. Biochem. 103 (2009) 666 (https://doi.org/10.1016/j.jinorgbio.2008.12.016).