Efficiency of interfacial charge transfer complex between TiO2 nanoparticles and caffeic acid against DNA damage in vitro: combinatorial analysis

Vesna Lazić, Ivana Vukoje, Bojana Milićević, Biljana Spremo-Potparević, Lada Živković, Dijana Topalović, Vladan Bajić, Dušan Sredojević, Jovan Nedeljković

Abstract


The genotoxic and antigenotoxic behavior of the interfacial charge transfer (ICT) complex between nano-sized TiO2 particles and caffeic acid (CA) was studied in the in vitro experiments. The formation of the ICT complex is indicated by the appearance of absorption in visible-spectral range. The continual variations method indicated bridging coordination between ligand, caffeic acid, and surface Ti atoms, while the stability constant of the ICT complex was found to be 1.5×103 mol-1 L. The agreement between the experimental data and theoretical results, based on density functional theory, was found. The ICT complex and its components did not display genotoxicity in the broad concentration range (0.4‒8.0 mg/mL TiO2; molar ratio c(TiO2)/c(CA)=8). On the other hand, post-treatment of damaged DNA by the ICT complex induced antigenotoxic effect at lower concentrations, but at higher concentrations (5.125‒10.250 mg mL-1 ICT) the ICT complex didn’t show any beneficial effect on H2O2 induced DNA damaged cells. The experimental data were analyzed using the combinatorial method to determine the effect of component interaction on the genotoxic and antigenotoxic behavior of the ICT complex.


Keywords


hybrid nanomaterials; DFT calculation; genotoxic property; antigeno¬toxic property

Full Text:

PDF (1,425 kB)

References


M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem Rev 95 (1995) 69 (https://www.doi.org/10.1021/cr00033a004)

S. Gunes, N. Marjanovic, J. M. Nedeljkovic, and N. S. Sariciftci, Nanotechnology 19 (2008) 424009 (https://www.doi.org/10.1088/0957-4484/19/42/424009)

T. Rajh, N. M. Dimitrijevic, M. Bissonnette, T. Koritarov, and V. Konda, Chem Rev 114 (2014) 10177 (https://www.doi.org/10.1021/cr500029g)

K. Donaldson, L. Tran, L. A. Jimenez, R. Duffin, D. E. Newby, N. Mills, W. MacNee, V. Stone, Part Fibre Toxicol 2 (2005) 10 (https://www.doi.org/10.1186/1743-8977-2-10)

S. P. Singh, M. F. Rahman, U. S. Murty, M. Mahboob, and P. Grover, Toxicol Appl Pharmacol 266 (2013) 56 (http://dx.doi.org/10.1016/j.taap.2012.10.016)

H. Bahadar, F. Maqbool, K. Niaz, and M. Abdollahi, Iranian Biomedical Journal 20 (2016) 1 (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4689276/)

J. Khalili Fard, S. Jafari, and M. A. Eghbal, Advanced pharmaceutical bulletin 5 (2015) 447 (https://www.ncbi.nlm.nih.gov/pubmed/26819915)

A. Sukhanova, S. Bozrova, P. Sokolov, M. Berestovoy, A. Karaulov, and I. Nabiev, Nanoscale Res Lett 13 (2018) 44 (https://www.ncbi.nlm.nih.gov/pubmed/29417375)

K. P. Lee, H. J. Trochimowicz, and C. F. Reinhardt, Toxicol Appl Pharm 79 (1985) 179 (http://www.sciencedirect.com/science/article/pii/0041008X85903394)

P. M. Hext, J. A. Tomenson, and P. Thompson, Ann Occup Hyg 49 (2005) 461 (http://dx.doi.org/10.1093/annhyg/mei012)

Z. Magdolenova, A. Collins, A. Kumar, A. Dhawan, V. Stone, and M. Dusinska, Nanotoxicology 8 (2014) 233 (https://www.ncbi.nlm.nih.gov/pubmed/23379603)

H. Shi, R. Magaye, V. Castranova, and J. Zhao, Particle and Fibre Toxicology 10 (2013) 15 (https://www.doi.org/10.1186/1743-8977-10-15)

V. Dunkel, E. Zeiger, D. Brusick, E. McCoy, D. McGregor, K. Mortelmans, H. S. Rosenkranz, and V. F. Simmon, Escherichia Coli. Environ. Mutagenesis 7 (1985) 1 (https://www.doi.org/10.1002/em.2860070902)

J. L. Ivett, B. M. Brown, C. Rodgers, B. E. Anderson, M. A. Resnick, and E. Zeiger, Environ Mol Mutagen 14 (1989) 165 (https://www.onlinelibrary.wiley.com/doi/abs/10.1002/em.2850140306)

T. Hasan, and G. Fatime, Toxicol Ind Health 23 (2007) 19 (https://www.doi.org/10.1177/0748233707076764)

A. Churg, B. Gilks, and J. Dai, Am J Physiol-Lung C 277 (1999) L975 (https://www.physiology.org/doi/abs/10.1152/ajplung.1999.277.5.L975)

J. Chen, X. Dong, J. Zhao, and G. Tang, J Appl Toxicol 29 (2009) 330 (https://www.onlinelibrary.wiley.com/doi/abs/10.1002/jat.1414)

A. Huk, A. R. Collins, N. El Yamani, C. Porredon, A. Azqueta, J. de Lapuente, and M. Dusinska, Mutagenesis 30 (2015) 85 (http://dx.doi.org/10.1093/mutage/geu077)

T. Rajh, J. M. Nedeljkovic, L. X. Chen, O. Poluektov, and M. C. Thurnauer, J Phys Chem B 103 (1999) 3515 (https://www.doi.org/10.1021/jp9901904)

T. D. Savić, Z. V. Šaponjić, M. I. Čomor, J. M. Nedeljković, M. D. Dramićanin, M. G. Nikolić, D. Ž. Veljković, S. D. Zarić, and I. A. Janković, Nanoscale 5 (2013) 7601 (http://dx.doi.org/10.1039/C3NR01277H)

I. M. Dugandžić, D. J. Jovanović, L. T. Mančić, O. B. Milošević, S. P. Ahrenkiel, Z. V. Šaponjić, and J. M. Nedeljković, Mater Chem Phys 143 (2013) 233 (http://www.sciencedirect.com/science/article/pii/S0254058413006603)

V. Bajić, B. Spremo-Potparević, L. Živković, A. Čabarkapa, J. Kotur-Stevuljević, E. Isenović, D. Sredojević, I. Vukoje, V. Lazić, S. P. Ahrenkiel, J. M. Nedeljković, Colloid Surface B 155 (2017) 323 (http://www.sciencedirect.com/science/article/pii/S0927776517302187)

C. Yang, H. Wu, J. Shi, X. Wang, J. Xie, Z. Jiang, Ind Eng Chem Res 53 (2014) 12665 (http://dx.doi.org/10.1021/ie501734g)

D. N. Sredojević, T. Kovač, E. Džunuzović, V. Ðorđević, B. N. Grgur, J. M. Nedeljković, Chem. Phys. Lett. 686 (2017) 167 (http://www.sciencedirect.com/science/article/pii/S0009261417307844)

B. Milićević, V. Đorđević, D. Lončarević, J. M. Dostanić, S. P. Ahrenkiel, M. D. Dramićanin, D. Sredojević, N. M. Švrakić, and J. M. Nedeljković, Opt Mater 73 (2017) 163 (http://www.sciencedirect.com/science/article/pii/S0925346717305116)

L. Tian, J. Xu, A. Alnafisah, R. Wang, X. Tan, N. A. Oyler, L. Liu, and X. Chen, Chemistry (Weinheim an der Bergstrasse, Germany) 23 (2017) 5345 (https://www.doi.org/10.1002/chem.201606027)

B. Milićević, V. Đorđević, D. Lončarević, S. P. Ahrenkiel, M. D. Dramićanin, and J. M. Nedeljković, Micropor. Mesopor. Mat. 217 (2015) 184 (https://www.doi.org/10.1016/j.micromeso.2015.06.028)

S. Higashimoto, T. Nishi, M. Yasukawa, M. Azuma, Y. Sakata, and H. Kobayashi, J. Catal. 329 (2015) 286 (https://www.doi.org/10.1016/j.jcat.2015.05.010)

D. Dekanski, B. Spremo-Potparević, V. Bajić, L. Živković, D. Topalović, D. N. Sredojević, V. Lazić, and J. M. Nedeljković, Food Chem Toxicol 115 (2018) 42 (http://www.sciencedirect.com/science/article/pii/S0278691518301388)

T. C. Chou, Pharmacol Rev 58 (2006) 621 (http://pharmrev.aspetjournals.org/content/58/3/621)

T. Rajh, A. E. Ostafin, O. I. Micic, D. M. Tiede, and M. C. Thurnauer, J Phys Chem 100 (1996) 4538 (https://www.doi.org/10.1021/jp952002p)

G. Eisenberg, Industrial & Engineering Chemistry Analytical Edition 15 (1943) 327 (https://www.doi.org/10.1021/i560117a011)

H. A. Benesi, and J. H. Hildebrand, J Am Chem Soc 71 (1949) 2703 (https://www.doi.org/10.1021/ja01176a030)

W. B. Person, J Am Chem Soc 87 (1965) 167 (https://www.doi.org/10.1021/ja01080a006)

L. X. Chen, T. Rajh, Z. Wang, and M. C. Thurnauer, J Phys Chem B 101 (1997) 10688 (https://www.doi.org/10.1021/jp971930g)

W. C. Vosburgh, and G. R. Cooper, J Am Chem Soc 63 (1941) 437 (https://www.doi.org/10.1021/ja01847a025)

N. P. Singh, M. T. McCoy, R. R. Tice, and E. L. Schneider, Exp Cell Res 175 (1988) 184 (http://www.sciencedirect.com/science/article/pii/0014482788902650)

D. Anderson, T. W. Yu, B. J. Phillips, and P. Schmezer, Mutat Res-Fund Mol M 307 (1994) 261 (http://www.sciencedirect.com/science/article/pii/002751079490300X)

D. Manojlovic, M. D. Dramićanin, V. Miletic, D. Mitić-Ćulafić, B. Jovanović, and B. Nikolić, Dent Mater 33 (2017) 454 (http://www.sciencedirect.com/science/article/pii/S0109564117301525)

I. A. Janković, Z. V. Šaponjić, E. S. Džunuzović, and J. M. Nedeljković, Nanoscale Res Lett 5 (2010) 81 (https://www.doi.org/10.1007/s11671-009-9447-y)

J.-P. Cornard, and C. Lapouge, J Phys Chem A 110 (2006) 7159 (https://www.doi.org/10.1021/jp060147y)

S. Manzhos, and K. Kotsis, Chem. Phys. Lett. 660 (2016) 69 (https://www.cheric.org/research/tech/periodicals/view.php?seq=1495551)

V. R. Coelho, C. G. Vieira, L. P. de Souza, L. L. da Silva, P. Pflüger, G. G. Regner, D. K. M. Papke, J. N. Picada, and P. Pereira, N-S Arch Pharmacol 389 (2016) 1195 (https://www.doi.org/10.1007/s00210-016-1281-z)




DOI: https://doi.org/10.2298/JSC181217017L

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.797 (139 of 171 journals)
5 Year Impact Factor 0.923 (134 of 171 journals)