Contemporary approaches in development of new materials for electrochemical energy conversion

Igor Pašti

Abstract


The development of modern society is followed by increasing energy demands, with highlighting the importance of sustainability of the energy system. In line with this task, electrochemistry has been set in the center of modern research, offering a large number of solutions for energy conversion and storage. One of the main problems is the identification of new electrocatalytic materials which are used for energy conversion applications. A brief view on the use of modern computational techniques in discovery of new electrocatalysts is provided, mainly focusing on the electronic structure methods and the idea of catalytic descriptor. Using this approach it is possible to screen many candidates for new electrocatalysts. However, the complexity of electrified interface requires additional efforts to fully understand the properties of electrocatalytic materials.

Keywords


electrocatalysis; materials design; electronic structure methods; activity descriptor

Full Text:

PDF (1,148 kB)

References


S. Trasatti, J. Electroanal. Chem. 39 (1972) 163 (https://doi.org/10.1016/S0022-0728(72)80485-6)

J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc. 152 (2005) J23 (https://doi.org/10.1149/1.1856988)

W. Schmickler, S. Trasatti, J. Electrochem. Soc. 153 (2006) L31 (https://doi.org/10.1149/1.2358294)

J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff, J. K. Nørskov, Nat. Mater. 5 (2006) 909 (https://doi.org/10.1038/nmat1752)

I. A. Pašti, N. M. Gavrilov, M. Baljozović, M. Mitrić, S. V. Mentus, Electrochim. Acta 114 (2013) 706 (https://doi.org/10.1016/j.electacta.2013.10.114)

J. K. Nørskov, T. Bligaard, J. Rossmeisl, C. H. Christensen, Nat. Chem. 1 (2009) 37 (https://doi.org/10.1038/nchem.121)

M. J. Eslamibidgoli, M. H. Eikerling, Curr. Opin. Electrochem. 9 (2018) 189 (https://doi.org/10.1016/j.coelec.2018.03.038)

J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem. B 108 (2004) 17886–17892. (https://doi.org/10.1021/jp047349j)

F. Abild-Pedersen, J. Greeley, F. Studt, J. Rossmeisl, T. R. Munter, P. G. Moses, E. Skúlason, T. Bligaard, J. K. Nørskov, Phys. Rev. Lett. 99 (2007) 016105 (https://doi.org/10.1103/PhysRevLett.99.016105)

E. Fako, A. S. Dobrota, I. A. Pašti, N. López, S. V. Mentus, N. V. Skorodumova, Phys. Chem. Chem. Phys. 20 (2018) 1524 (https://doi.org/10.1039/C7CP07276G)

I. A. Pašti, M. Leetmaa, N. V. Skorodumova, Int. J. Hydrogen Energy 41 (2016) 2526 (https://doi.org/10.1016/j.ijhydene.2015.12.026)

S. J. Gutić, A. S. Dobrota, M. Leetmaa, N. V. Skorodumova, S. V. Mentus, I. A. Pašti, Phys. Chem. Chem. Phys. 19 (2017) 13281 (https://doi.org/10.1039/C7CP01237C)




DOI: https://doi.org/10.2298/https://doi.org/10.2298/JSC190122005P

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.797 (139 of 171 journals)
5 Year Impact Factor 0.923 (134 of 171 journals)