Facile solvothermal synthesis of Pt–Cu nanocatalyst with improved electrocatalytic activity toward methanol oxidation

Main Article Content

Muhammad Haris Mehmood
Muhammad Tariq
https://orcid.org/0000-0001-9943-7875
Ayaz Hassan
Abdul Raziq
Abdur Rahim
Jehangeer Khan

Abstract

A binary metal nanocatalyst of platinum and copper was synthesized using a facile solvothermal process (polyol method). The synthesized catalyst was characterized using energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The electro­chemical performance of the synthesized carbon supported binary metal cat­alyst, Pt–Cu/С, toward methanol oxidation reaction was checked and then com­pared with the commercial Pt/C (ETEK) catalyst, using cyclic voltammetry and chronoamperometric techniques. The Pt–Cu/C catalyst was found to be cubic in shape with indentations on the particle surface, having platinum to copper atomic composition of 4:1, i.e., (Pt4Cu). The peak current density for Pt–Cu/C catalyst recorded as 2.3 mA cm-2 at 0.7 V (vs Ag/AgCl) and 50 mV s-1, was two times higher than the current density of the commercially available Pt/C catalyst (1.16 mA cm-2 at 0.76 V). Moreover, the Pt–Cu/C catalyst was found to be more durable than the commercial Pt/C catalyst, as the Pt–Cu/C retained 89 % of its initial current density, while the commercial Pt/C catalyst retained 65 % of its initial current density after 300 potential cycles.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. H. Mehmood, M. Tariq, A. Hassan, A. Raziq, A. Rahim, and J. Khan, “Facile solvothermal synthesis of Pt–Cu nanocatalyst with improved electrocatalytic activity toward methanol oxidation”, J. Serb. Chem. Soc., vol. 84, no. 10, pp. 1155–1167, Nov. 2019.
Section
Electrochemistry

References

1C. A. S. Hall, J. G. Lambert, S. B. Balogh, Energy Policy 64 (2014) 141 (http://dx.doi.org/10.1016/j.enpol.2013.05.049)

K. Wang, R. Sriphathoorat, S. Luo, M. Tang, H. Du, P. K. Shen, J. Mater. Chem. A 4 (2016) 13425 (http://dx.doi.org/10.1039/c6ta05230d).

J. Larminie, A. Dicks, Proton Exchange Membrane Fuel Cells: Review, in Prot. Exch. Membr. Fuel Cells, Springer International Publishing AG, 2018, pp. 9 (http://dx.doi.org/10.1002/9781118878330.ch4)

D. L. Douglas, Molten Carbonate Cells with Gas-Diffusion Electrodes, in S. Basu (Ed.), Recent Trends Fuel Cell Sci. Technol., Springer, 1960, pp. 308 (http://dx.doi.org/10.1021/ie50604a030)

B. C. H. Steele, A. Heinzel, Nature 414 (2001) 345 (http://dx.doi.org/10.1038/35104620)

W. Qian, D. P. Wilkinson, J. Shen, H. Wang, J. Zhang, J. Power Sources 154 (2006) 202 (http://dx.doi.org/10.1016/j.jpowsour.2005.12.019)

X. Zhang, K-Yu. Chan, Chem. Mater. 15 (2003) 454 https://pubs.acs.org/doi/pdf/10.1021/cm0203868

B. Beden, C. Lamy, A. Bewick, K. Kunimatsu, J. Electroanal. Chem. 121 (1981) 343 (http://dx.doi.org/10.1016/S0022-0728(81)80590-6)

F. Zhan, T. Bian, W. Zhao, H. Zhang, M. Jin, D. Yang, CrystEngComm 16 (2014) 2411 (http://dx.doi.org/10.1039/C3CE42362J)

P. Holt-hindle, Q. Yi, G. Wu, K. Koczkur, A. Chen, J. Electrochem. Soc. 155 (2008) K5 (http://dx.doi.org/10.1149/1.2801987)

J. Wang, P. Holt-Hindle, D. MacDonald, D. F. Thomas, A. Chen, Electrochim. Acta 53 (2008) 6944 (http://dx.doi.org/10.1016/j.electacta.2008.02.028)

Q. Jiang, L. Jiang, H. Hou, J. Qi, S. Wang, G. Sun, J. Phys. Chem. C 114 (2010) 19714 (http://dx.doi.org/10.1021/jp1039755)

D. Wang, H. L. Xin, R. Hovden, H. Wang, Y. Yu, D. A. Muller, F. J. Disalvo, H. D. Abruña, Nat. Mater. 12 (2013) 81 (http://dx.doi.org/10.1038/nmat3458)

W. Tang, S. Jayaraman, T. F. Jaramillo, G. D. Stucky, E. W. McFarland, J. Phys. Chem. C 113 (2009) 5014 (http://dx.doi.org/10.1021/jp8089209)

P. Justin, G. R. Rao, Catal. Today 141 (2009) 138 (http://dx.doi.org/10.1016/j.cattod.2008.03.019)

J. H. Jang, E. Lee, J. Park, G. Kim, S. Hong, Y. U. Kwon, Sci. Rep. 3 (2013) 2872 (http://dx.doi.org/10.1038/srep02872)

Y. Cao, Y. Yang, Y. Shan, Z. Huang, ACS Appl. Mater. Interfaces 8 (2016) 5998 (http://dx.doi.org/10.1021/acsami.5b11364)

G. Fu, X. Yan, Z. Cui, D. Sun, L. Xu, Y. Tang, J. B. Goodenough, J.-M. Lee, Chem. Sci. 7 (2016) 5414–5420 (http://dx.doi.org/10.1039/C6SC01501H)

I. A. Khan, Y. Qian, A. Badshah, D. Zhao, M. A. Nadeem, Fabrication of Highly Stable and Efficient PtCu Alloy Nanoparticles on Highly Porous Carbon for Direct Methanol Fuel Cells, 2016 (http://dx.doi.org/10.1021/acsami.6b06068)

S. Chen, H. Su, Y. Wang, W. Wu, J. Zeng, Angew. Chemie - Int. Ed. 54 (2015) 108 (http://dx.doi.org/10.1002/anie.201408399)

A. Chen, P. Holt-Hindle, Chem. Rev. 110 (2010) 3767 (http://dx.doi.org/10.1021/cr9003902)

M. Luo, S. Guo, Nat. Rev. Mater. 2 (2017) 1 (http://dx.doi.org/10.1038/natrevmats.2017.59)

M. Perullini, S. A. Aldabe Bilmes, M. Jobbágy, Cerium oxide nanoparticles: Structure, applications, reactivity, and eco-toxicology, Springer London, London, 2013 (http://dx.doi.org/10.1007/978-1-4471-4213-3)

K. Wang, R. Sriphathoorat, S. Luo, M. Tang, H. Du, P. K. Shen, Y. Wang, C. Ma, Z. Li, J. Zeng, J. Mater. Chem. A 4 (2016) 13425 (http://dx.doi.org/10.1039/C6TA05230D)

M. Lukaszewski, M. Soszko, A. Czerwiński, Int. J. Electrochem. Sci. 11 (2016) 4442 (http://dx.doi.org/10.20964/2016.06.71)

T. Binninger, E. Fabbri, R. Kotz, T. J. Schmidt, J. Electrochem. Soc. 161 (2013) H121 (http://dx.doi.org/10.1149/2.055403jes)

J. M. D. Rodríguez, J. A. H. Melián, and J. P. Peña, J. Chem. Educ. 77 (2000) 1195 (https://pubs.acs.org/doi/pdf/10.1021/ed077p1195)

Z. Dongping, J. Velmurugan, M. V. Mirkin, J. Am. Chem. Soc. 131 (2009) 14756 (http://dx.doi.org/10.1021/ja902876v)

A. B. Bocarsly, Cyclic Voltammetry, in E. N. Kaufmann (Ed.), Charact. Mater., 2002, pp. 837 (http://dx.doi.org/10.1002/0471266965.com050.pub2)

S. Gu, W. Sheng, R. Cai, S. M. Alia, S. Song, K. O. Jensen, Y. Yan, Chem. Commun. 49 (2013) 131 (http://dx.doi.org/10.1039/C2CC34862D)

L. Han, P. Cui, H. He, H. Liu, Z. Peng, J. Yang, J. Power Sources 286 (2015) 488 (http://dx.doi.org/10.1016/j.jpowsour.2015.04.003).

S. Du, Y. Lu, R. Steinberger-Wilckens, Carbon N. Y. 79 (2014) 346 (http://dx.doi.org/10.1016/j.carbon.2014.07.076)

D. Y. Chung, H. Il Kim, Y. H. Chung, M. J. Lee, S. J. Yoo, A. D. Bokare, W. Choi, Y. E. Sung, Sci. Rep. 4 (2014) 194 (http://dx.doi.org/10.1038/srep07450)

M. Xiao, S. Li, X. Zhao, J. Zhu, M. Yin, C. Liu, W. Xing, ChemCatChem 6 (2014) 2825 (http://dx.doi.org/10.1002/cctc.201402186)

A. Ghosh, S. Ramaprabhu, Catal. Sci. Technol. 7 (2017) 5079 (http://dx.doi.org/10.1039/C7CY01522D)

H. H. Li, S. Zhao, M. Gong, C. H. Cui, D. He, H. W. Liang, L. Wu, S. H. Yu, Angew. Chemie - Int. Ed. 52 (2013) 7472 (http://dx.doi.org/10.1002/anie.201302090).

Most read articles by the same author(s)