Facile solvothermal synthesis of Pt–Cu nanocatalyst with improved electrocatalytic activity toward methanol oxidation

Muhammad Haris Mehmood, Muhammad Tariq, Ayaz Hassan, Abdul Raziq, Abdur Rahim, Jehangeer Khan


A binary metal nanocatalyst of platinum and copper was synthesized using a facile solvothermal process (polyol method). The synthesized catalyst was characterized using energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The electro­chemical performance of the synthesized carbon supported binary metal cat­alyst, Pt–Cu/С, toward methanol oxidation reaction was checked and then com­pared with the commercial Pt/C (ETEK) catalyst, using cyclic voltammetry and chronoamperometric techniques. The Pt–Cu/C catalyst was found to be cubic in shape with indentations on the particle surface, having platinum to copper atomic composition of 4:1, i.e., (Pt4Cu). The peak current density for Pt–Cu/C catalyst recorded as 2.3 mA cm-2 at 0.7 V (vs Ag/AgCl) and 50 mV s-1, was two times higher than the current density of the commercially available Pt/C catalyst (1.16 mA cm-2 at 0.76 V). Moreover, the Pt–Cu/C catalyst was found to be more durable than the commercial Pt/C catalyst, as the Pt–Cu/C retained 89 % of its initial current density, while the commercial Pt/C catalyst retained 65 % of its initial current density after 300 potential cycles.


cyclic voltammetry; electrochemical activity; chronoamperometry; fuel cells; DMFC


1C. A. S. Hall, J. G. Lambert, S. B. Balogh, Energy Policy 64 (2014) 141 (http://dx.doi.org/10.1016/j.enpol.2013.05.049)

K. Wang, R. Sriphathoorat, S. Luo, M. Tang, H. Du, P. K. Shen, J. Mater. Chem. A 4 (2016) 13425 (http://dx.doi.org/10.1039/c6ta05230d).

J. Larminie, A. Dicks, Proton Exchange Membrane Fuel Cells: Review, in Prot. Exch. Membr. Fuel Cells, Springer International Publishing AG, 2018, pp. 9 (http://dx.doi.org/10.1002/9781118878330.ch4)

D. L. Douglas, Molten Carbonate Cells with Gas-Diffusion Electrodes, in S. Basu (Ed.), Recent Trends Fuel Cell Sci. Technol., Springer, 1960, pp. 308 (http://dx.doi.org/10.1021/ie50604a030)

B. C. H. Steele, A. Heinzel, Nature 414 (2001) 345 (http://dx.doi.org/10.1038/35104620)

W. Qian, D. P. Wilkinson, J. Shen, H. Wang, J. Zhang, J. Power Sources 154 (2006) 202 (http://dx.doi.org/10.1016/j.jpowsour.2005.12.019)

X. Zhang, K-Yu. Chan, Chem. Mater. 15 (2003) 454 https://pubs.acs.org/doi/pdf/10.1021/cm0203868

B. Beden, C. Lamy, A. Bewick, K. Kunimatsu, J. Electroanal. Chem. 121 (1981) 343 (http://dx.doi.org/10.1016/S0022-0728(81)80590-6)

F. Zhan, T. Bian, W. Zhao, H. Zhang, M. Jin, D. Yang, CrystEngComm 16 (2014) 2411 (http://dx.doi.org/10.1039/C3CE42362J)

P. Holt-hindle, Q. Yi, G. Wu, K. Koczkur, A. Chen, J. Electrochem. Soc. 155 (2008) K5 (http://dx.doi.org/10.1149/1.2801987)

J. Wang, P. Holt-Hindle, D. MacDonald, D. F. Thomas, A. Chen, Electrochim. Acta 53 (2008) 6944 (http://dx.doi.org/10.1016/j.electacta.2008.02.028)

Q. Jiang, L. Jiang, H. Hou, J. Qi, S. Wang, G. Sun, J. Phys. Chem. C 114 (2010) 19714 (http://dx.doi.org/10.1021/jp1039755)

D. Wang, H. L. Xin, R. Hovden, H. Wang, Y. Yu, D. A. Muller, F. J. Disalvo, H. D. Abruña, Nat. Mater. 12 (2013) 81 (http://dx.doi.org/10.1038/nmat3458)

W. Tang, S. Jayaraman, T. F. Jaramillo, G. D. Stucky, E. W. McFarland, J. Phys. Chem. C 113 (2009) 5014 (http://dx.doi.org/10.1021/jp8089209)

P. Justin, G. R. Rao, Catal. Today 141 (2009) 138 (http://dx.doi.org/10.1016/j.cattod.2008.03.019)

J. H. Jang, E. Lee, J. Park, G. Kim, S. Hong, Y. U. Kwon, Sci. Rep. 3 (2013) 2872 (http://dx.doi.org/10.1038/srep02872)

Y. Cao, Y. Yang, Y. Shan, Z. Huang, ACS Appl. Mater. Interfaces 8 (2016) 5998 (http://dx.doi.org/10.1021/acsami.5b11364)

G. Fu, X. Yan, Z. Cui, D. Sun, L. Xu, Y. Tang, J. B. Goodenough, J.-M. Lee, Chem. Sci. 7 (2016) 5414–5420 (http://dx.doi.org/10.1039/C6SC01501H)

I. A. Khan, Y. Qian, A. Badshah, D. Zhao, M. A. Nadeem, Fabrication of Highly Stable and Efficient PtCu Alloy Nanoparticles on Highly Porous Carbon for Direct Methanol Fuel Cells, 2016 (http://dx.doi.org/10.1021/acsami.6b06068)

S. Chen, H. Su, Y. Wang, W. Wu, J. Zeng, Angew. Chemie - Int. Ed. 54 (2015) 108 (http://dx.doi.org/10.1002/anie.201408399)

A. Chen, P. Holt-Hindle, Chem. Rev. 110 (2010) 3767 (http://dx.doi.org/10.1021/cr9003902)

M. Luo, S. Guo, Nat. Rev. Mater. 2 (2017) 1 (http://dx.doi.org/10.1038/natrevmats.2017.59)

M. Perullini, S. A. Aldabe Bilmes, M. Jobbágy, Cerium oxide nanoparticles: Structure, applications, reactivity, and eco-toxicology, Springer London, London, 2013 (http://dx.doi.org/10.1007/978-1-4471-4213-3)

K. Wang, R. Sriphathoorat, S. Luo, M. Tang, H. Du, P. K. Shen, Y. Wang, C. Ma, Z. Li, J. Zeng, J. Mater. Chem. A 4 (2016) 13425 (http://dx.doi.org/10.1039/C6TA05230D)

M. Lukaszewski, M. Soszko, A. Czerwiński, Int. J. Electrochem. Sci. 11 (2016) 4442 (http://dx.doi.org/10.20964/2016.06.71)

T. Binninger, E. Fabbri, R. Kotz, T. J. Schmidt, J. Electrochem. Soc. 161 (2013) H121 (http://dx.doi.org/10.1149/2.055403jes)

J. M. D. Rodríguez, J. A. H. Melián, and J. P. Peña, J. Chem. Educ. 77 (2000) 1195 (https://pubs.acs.org/doi/pdf/10.1021/ed077p1195)

Z. Dongping, J. Velmurugan, M. V. Mirkin, J. Am. Chem. Soc. 131 (2009) 14756 (http://dx.doi.org/10.1021/ja902876v)

A. B. Bocarsly, Cyclic Voltammetry, in E. N. Kaufmann (Ed.), Charact. Mater., 2002, pp. 837 (http://dx.doi.org/10.1002/0471266965.com050.pub2)

S. Gu, W. Sheng, R. Cai, S. M. Alia, S. Song, K. O. Jensen, Y. Yan, Chem. Commun. 49 (2013) 131 (http://dx.doi.org/10.1039/C2CC34862D)

L. Han, P. Cui, H. He, H. Liu, Z. Peng, J. Yang, J. Power Sources 286 (2015) 488 (http://dx.doi.org/10.1016/j.jpowsour.2015.04.003).

S. Du, Y. Lu, R. Steinberger-Wilckens, Carbon N. Y. 79 (2014) 346 (http://dx.doi.org/10.1016/j.carbon.2014.07.076)

D. Y. Chung, H. Il Kim, Y. H. Chung, M. J. Lee, S. J. Yoo, A. D. Bokare, W. Choi, Y. E. Sung, Sci. Rep. 4 (2014) 194 (http://dx.doi.org/10.1038/srep07450)

M. Xiao, S. Li, X. Zhao, J. Zhu, M. Yin, C. Liu, W. Xing, ChemCatChem 6 (2014) 2825 (http://dx.doi.org/10.1002/cctc.201402186)

A. Ghosh, S. Ramaprabhu, Catal. Sci. Technol. 7 (2017) 5079 (http://dx.doi.org/10.1039/C7CY01522D)

H. H. Li, S. Zhao, M. Gong, C. H. Cui, D. He, H. W. Liang, L. Wu, S. H. Yu, Angew. Chemie - Int. Ed. 52 (2013) 7472 (http://dx.doi.org/10.1002/anie.201302090).

DOI: https://doi.org/10.2298/JSC190131041M

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)