Study on the removal of NO from flue gas by wet scrubbing using NaClO3

Deqi Shi, Guoxin Sun, Yu Cui

Abstract


In order to remove nitric oxide (NO) from flue gas, from small coal-fired boilers, it is necessary to exploit cost-effective wet denitration technology. The absorption of NO with sodium chlorate (NaClO3) solution was studied. The effects of experimental conditions, such as temperature, NaClO3 concentration, type of acid, molar ratio of NaClO3 to hydrogen ions (H+), on NO removal rate were investigated, and the optimal conditions were established. As the effect of temperature on denitration was related to the type of acid used, the temperature required for sulfuric acid (H2SO4) was high, and the temperature required for nitric acid (HNO3) was low. The optimal molar ratio between NaClO3 and the two types of acids was the same. The reaction products were analyzed by ion chromatography. The reacted solution could be recycled after the removal of sodium chloride (NaCl). The reaction mechanism and total chemical reaction equation of NaClO3 denitration were deduced. The thermodynamic derivations showed that this oxidation reaction could proceed spontaneously and the reaction was very thorough. NaClO3 exhibited high NO removal efficiency and its denitration cost was much lower than sodium chlorite (NaClO2).


Keywords


nitrogen oxides (NOx); oxidation; absorption; NaClO3; denitration

Full Text:

PDF (1,332 kB)

References


R. F. Sawyer, Symposium (International) on Combustion 18 (1981) 1 (http://dx.doi.org/10.1016/S0082-0784(81)80006-9)

M. J. Prather, J. A. Logan, Symposium (International) on Combustion 25 (1994) 1513 (http://dx.doi.org/10.1016/S0082-0784(06)80796-4)

J. H. Ye, J. Shang, Q. Li, W. W. Xu, J. Liu, X. Feng, T. Zhu, J. Hazard. Mater. 271 (2014) 89 (http://dx.doi.org/10.1016/j.jhazmat.2014.02.011)

B. R. Deshwal, S. H. Lee, J. H. Jung, B. H. Shon, H. K. Lee, J. Environ. Sci-China 20 (2008) 33 (http://dx.doi.org/10.1016/S1001-0742(08)60004-2)

H. K. Lee, B. R. Deshwal, K. S. Yoo, Korean. J. Chem. Eng. 22 (2005) 208 (http://dx.doi.org/10.1007/BF02701486)

W. Y. Sun, S. L. Ding, S. S. Zeng, S. J. Su, W. J. Jiang, J. Hazard. Mater. 192 (2011) 124 (http://dx.doi.org/10.1016/j.jhazmat.2011.04.104)

N. D. Hutson, R. Kryzynska, R. K. Srivastava, Ind. Eng. Chem. Res. 47 (2008) 5825 (http://dx.doi.org/10.1021/ie800339p)

A. Pourmohammadbagher, E. Jamshidi, H. Aleebrahim, S. Dabir, Ind. Eng. Chem. Res. 50 (2011) 8278 (http://dx.doi.org/10.1021/ie102272x)

X. L. Long, Z. L. Xin, M. B. Chen, W. Li, W. D. Xiao, W. K. Yuan, Sep. Purif. Technol. 58 (2008) 328 (http://dx.doi.org/10.1016/j.seppur.2007.05.004)

Y. G. Adewuyi, S. O. Owusu, J. Phys. Chem. A 110 (2006) 11098 (http://dx.doi.org/10.1021/jp0631634)

B. R. Deshwal, H. K. Lee, J. Environ. Sci-China 21 (2009) 155 (http://dx.doi.org/10.1016/S1001-0742(08)62244-5)

P. Fang, C. P. Cen, Z. X. Tang, P. Y. Zhong, D. S. Chen, Z. H. Chen, Chem. Eng. J. 168 (2011) 52 (http://dx.doi.org/10.1016/j.cej.2010.12.030)

Y. Zhao, T. X. Guo, Z. Y. Chen, Y. R. Du, Chem. Eng. J. 160 (2010) 42 (http://dx.doi.org/10.1016/j.cej.2010.02.060)

D. S. Jin, B. R. Deshwal, Y. S. Park, H. K. Lee, J. Hazard. Mater. 135 (2006) 412 (http://dx.doi.org/10.1016/j.jhazmat.2005.12.001) H. Chu, T. W. Chien, S. Y. Li, Sci. Total. Environ. 275 (2001) 127 (http://dx.doi.org/10.1016/S0048-9697(00)00860-3)

T. Chien, H. Chu, H. Hsueh, J. Environ. Eng. 129 (2003) 967 (http://dx.doi.org/10.1061/(ASCE)0733-9372(2003)129:11(967)

T. W. Chien, H. Chu, J. Hazard. Mater. 80 (2000) 43 (http://dx.doi.org/10.1016/S0304-3894(00)00274-0)

H. W. Hsu, C. J. Lee, K. S. Chou, Chem. Eng. Commun. 170 (1998) 67 (http://dx.doi.org/10.1080/00986449808912736)

H. Chu, T. W. Chien, B. W. Twu, J. Hazard. Mater. 84 (2001) 241 (http://dx.doi.org/10.1016/S0304-3894(01)00215-1)

Y. G. Adewuyi, X. D. He, H. Shaw, W. Lolertpihop, Chem. Eng. Commun. 174 (1999) 21 (http://dx.doi.org/10.1080/00986449908912788)

E. Sada, H. Kumazawa, I. Kudo, T. Kondo, Chem. Eng. Sci. 33 (1978) 315 (http://dx.doi.org/10.1016/0009-2509(78)80088-8)

J. C. Wei, Y. B. Luo, P. Yu, B. Cai, H. Z. Tan, J. Ind. Eng. Chem. 15 (2009) 16 (http://dx.doi.org/10.1016/j.jiec.2008.07.010)

D. Thomas, J. Vanderschuren, Chem. Eng. Sci. 51 (1996) 2649 (http://dx.doi.org/10.1016/0009-2509(96)00131-5)

E. B. Myers, T. J. Overcamp, Environ. Eng. Sci. 19 (2002) 321 (http://dx.doi.org/10.1089/10928750260418953)

L. Wang, W. Zhao, Z. Wu, Chem. Eng. J. 132 (2007) 227 (http://dx.doi.org/10.1016/j.cej.2006.12.030)

B. R. Deshwal, H. D. Jo, H. K. Lee, Can. J. Chem. Eng. 82 (2010) 619 (http://dx.doi.org/10.1002/cjce.5450820323)

B. R. Deshwal, H. K. Lee, J. Hazard. Mater. 108 (2004) 173 (http://dx.doi.org/10.1016/j.jhazmat.2003.12.006)

E. Sada, H. Kumazawa, I. Kudo, T. Kondo, Ind. Eng. Chem. Res. 18 (1979) 275 (http://dx.doi.org/10.1021/i260070a017)

J. J. Kaczur, Environ. Prog. Sustain. 15 (1996) 245 (http://dx.doi.org/10.1002/ep.670150414)

J. A. Dean, Lange’s Handbook of Chemistry, Science Press, Beijing, China, 2003 (in Chinese)

D. Z. Li, Chemical Thermodynamics Basement, Beijing Normal University Press, Beijing, China, 1982 (in Chinese).




DOI: https://doi.org/10.2298/JSC190305053S

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)