Study on the removal of NO from flue gas by wet scrubbing using NaClO3

Main Article Content

Deqi Shi
Guoxin Sun
Yu Cui

Abstract

In order to remove nitric oxide (NO) from flue gas, from small coal-fired boilers, it is necessary to exploit the cost-effective wet denitration tech­nology. The absorption of NO with sodium chlorate solution was stu­died. The effects of experimental conditions, such as temperature, NaClO3 con­centration, type of acid, mole ratio of NaClO3 to hydrogen ions, on NO rem­oval rate were investigated, and the optimal conditions were established. As the effect of temperature on denitration was related to the type of acid used, the temperature required for sulfuric acid was high, and the temperature required for nitric acid was low. The optimal mole ratio between NaClO3 and the two types of acids was the same. The reaction products were analyzed by ion chromatography. The reacted solution could be recycled after the removal of sodium chloride. The reaction mechanism and the total chemical reaction equation of NaClO3 denitration were deduced. The thermodynamic derivations showed that this oxidation reaction could proceed spontaneously and the reaction was very thor­ough. NaClO3 exhibited high NO removal efficiency and its denitration cost was much lower than sodium chlorite.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
D. Shi, G. Sun, and Y. Cui, “Study on the removal of NO from flue gas by wet scrubbing using NaClO3”, J. Serb. Chem. Soc., vol. 84, no. 10, pp. 1183–1192, Nov. 2019.
Section
Environmental Chemistry

References

R. F. Sawyer, Symposium (International) on Combustion 18 (1981) 1 (http://dx.doi.org/10.1016/S0082-0784(81)80006-9)

M. J. Prather, J. A. Logan, Symposium (International) on Combustion 25 (1994) 1513 (http://dx.doi.org/10.1016/S0082-0784(06)80796-4)

J. H. Ye, J. Shang, Q. Li, W. W. Xu, J. Liu, X. Feng, T. Zhu, J. Hazard. Mater. 271 (2014) 89 (http://dx.doi.org/10.1016/j.jhazmat.2014.02.011)

B. R. Deshwal, S. H. Lee, J. H. Jung, B. H. Shon, H. K. Lee, J. Environ. Sci-China 20 (2008) 33 (http://dx.doi.org/10.1016/S1001-0742(08)60004-2)

H. K. Lee, B. R. Deshwal, K. S. Yoo, Korean. J. Chem. Eng. 22 (2005) 208 (http://dx.doi.org/10.1007/BF02701486)

W. Y. Sun, S. L. Ding, S. S. Zeng, S. J. Su, W. J. Jiang, J. Hazard. Mater. 192 (2011) 124 (http://dx.doi.org/10.1016/j.jhazmat.2011.04.104)

N. D. Hutson, R. Kryzynska, R. K. Srivastava, Ind. Eng. Chem. Res. 47 (2008) 5825 (http://dx.doi.org/10.1021/ie800339p)

A. Pourmohammadbagher, E. Jamshidi, H. Aleebrahim, S. Dabir, Ind. Eng. Chem. Res. 50 (2011) 8278 (http://dx.doi.org/10.1021/ie102272x)

X. L. Long, Z. L. Xin, M. B. Chen, W. Li, W. D. Xiao, W. K. Yuan, Sep. Purif. Technol. 58 (2008) 328 (http://dx.doi.org/10.1016/j.seppur.2007.05.004)

Y. G. Adewuyi, S. O. Owusu, J. Phys. Chem. A 110 (2006) 11098 (http://dx.doi.org/10.1021/jp0631634)

B. R. Deshwal, H. K. Lee, J. Environ. Sci-China 21 (2009) 155 (http://dx.doi.org/10.1016/S1001-0742(08)62244-5)

P. Fang, C. P. Cen, Z. X. Tang, P. Y. Zhong, D. S. Chen, Z. H. Chen, Chem. Eng. J. 168 (2011) 52 (http://dx.doi.org/10.1016/j.cej.2010.12.030)

Y. Zhao, T. X. Guo, Z. Y. Chen, Y. R. Du, Chem. Eng. J. 160 (2010) 42 (http://dx.doi.org/10.1016/j.cej.2010.02.060)

D. S. Jin, B. R. Deshwal, Y. S. Park, H. K. Lee, J. Hazard. Mater. 135 (2006) 412 (http://dx.doi.org/10.1016/j.jhazmat.2005.12.001) H. Chu, T. W. Chien, S. Y. Li, Sci. Total. Environ. 275 (2001) 127 (http://dx.doi.org/10.1016/S0048-9697(00)00860-3)

T. Chien, H. Chu, H. Hsueh, J. Environ. Eng. 129 (2003) 967 (http://dx.doi.org/10.1061/(ASCE)0733-9372(2003)129:11(967)

T. W. Chien, H. Chu, J. Hazard. Mater. 80 (2000) 43 (http://dx.doi.org/10.1016/S0304-3894(00)00274-0)

H. W. Hsu, C. J. Lee, K. S. Chou, Chem. Eng. Commun. 170 (1998) 67 (http://dx.doi.org/10.1080/00986449808912736)

H. Chu, T. W. Chien, B. W. Twu, J. Hazard. Mater. 84 (2001) 241 (http://dx.doi.org/10.1016/S0304-3894(01)00215-1)

Y. G. Adewuyi, X. D. He, H. Shaw, W. Lolertpihop, Chem. Eng. Commun. 174 (1999) 21 (http://dx.doi.org/10.1080/00986449908912788)

E. Sada, H. Kumazawa, I. Kudo, T. Kondo, Chem. Eng. Sci. 33 (1978) 315 (http://dx.doi.org/10.1016/0009-2509(78)80088-8)

J. C. Wei, Y. B. Luo, P. Yu, B. Cai, H. Z. Tan, J. Ind. Eng. Chem. 15 (2009) 16 (http://dx.doi.org/10.1016/j.jiec.2008.07.010)

D. Thomas, J. Vanderschuren, Chem. Eng. Sci. 51 (1996) 2649 (http://dx.doi.org/10.1016/0009-2509(96)00131-5)

E. B. Myers, T. J. Overcamp, Environ. Eng. Sci. 19 (2002) 321 (http://dx.doi.org/10.1089/10928750260418953)

L. Wang, W. Zhao, Z. Wu, Chem. Eng. J. 132 (2007) 227 (http://dx.doi.org/10.1016/j.cej.2006.12.030)

B. R. Deshwal, H. D. Jo, H. K. Lee, Can. J. Chem. Eng. 82 (2010) 619 (http://dx.doi.org/10.1002/cjce.5450820323)

B. R. Deshwal, H. K. Lee, J. Hazard. Mater. 108 (2004) 173 (http://dx.doi.org/10.1016/j.jhazmat.2003.12.006)

E. Sada, H. Kumazawa, I. Kudo, T. Kondo, Ind. Eng. Chem. Res. 18 (1979) 275 (http://dx.doi.org/10.1021/i260070a017)

J. J. Kaczur, Environ. Prog. Sustain. 15 (1996) 245 (http://dx.doi.org/10.1002/ep.670150414)

J. A. Dean, Langes Handbook of Chemistry, Science Press, Beijing, China, 2003 (in Chinese)

D. Z. Li, Chemical Thermodynamics Basement, Beijing Normal University Press, Beijing, China, 1982 (in Chinese).