Preferential solvation of quercetin in aqueous aprotic solvent mixtures

Mohammad Faraji, Ali Farajtabar


Solvatochromism of quercetin was studied in binary mixtures of water with dimethyl sulfoxide, N,N-dimethylformamide and N,N-dimethyl­acetamide at 25 °C by UV-vis measurements. For all mixtures, a non-linear trend was observed in spectral shift as plotted against the bulk mole fractions. Deviation from ideal behavior indicates that the solvation shell of quercetin differs in composition from the bulk because of preferential solvation. The solvent exchange model was employed in analysis of solvatochromic data to quantify the extent of preferential solvation in the essence of solute-solvent and solvent-solvent intermolecular interactions. Results show that the solvation shell of quercetin is enriched in aprotic solvent and the complex that was formed by interaction between water and aprotic solvent, over the whole composition range. The distribution of the solvent species in the solvation cage was obtained from calculation of the local mole fractions as a function the bulk composition. It shows that the solvent-solvent interactions have great influence on the solvation behavior of quercetin in aqueous aprotic solvent mixtures.


solvatochromism; quercetin; preferential solvation; binary mixtures

Full Text:

PDF (1,217 kB)


C. Reichardt, T. Welton, Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH: Weinheim, Germany. 2011 (

Y. Bao, A. Farajtabar, M. Zheng, H. Zhao, Y. Li, J. Chem. Thermodyn. 133 (2019) 161 (

Y. Li, A. Farajtabar, H. Zhao, J. Sol. Chem. 48 (2019) 200 (

A. Farajtabar, F. Gharib, Monatsh Chem. 141 (2010) 381 (

A. Farajtabar, F. Gharib, J. Solution Chem. 39 (2010) 231 (

M. Zheng, G. Chen, J. Chen, A. Farajtabar, H. Zhao, J. Mol. Liq 276 (2019) 318 (

F. Naderi, A. Farajtabar, F. Gharib, J. Mol. Liq. 190 (2014) 126 (

A. Farajtabar, F. Jaberi, F. Gharib, Spectrochim. Acta A 83 (2011) 213 (

E. Bosch, F. Rived, M. Roses, J. Chem. Soc., Perkin Trans. 2 (1996) 2177 (

M. Roses, C. Rafols, J. Ortega, E. Bosch, J. Chem. Soc., Perkin Trans. 2 (1995) 1607 (

M. Faraji, A. Farajtabar, J. Serb. Chem. Soc. 81 (2016) 1161 (

G. S. Uscumlic, J. B. Nikolic, J. Serb. Chem. Soc. 74 (2009) 1335 (

D. R. Brkic, A. R. Bozic, V. D. Nikolic, A. D. Marinkovic, H. Elshaflu, J. B. Nikolic, S. Z. Drmanic, J. Serb. Chem. Soc. 81 (2016) 979 (

S. N. Z. Prlainovic, M. P. Rancic, I. Stojiljkovic, J. B. Nikolic, S. Z. Drmanic, I. Ajaj, A. D. Marinkovic, J. Serb. Chem. Soc. 83 (2018) 139 (

D. Mijin, B. Bozic, J. Ladarevic, L. Matovic, G. Uscumlic, V. Vitnik, Z. Vitnik, Color. Technol. 134 (2018) 478 (

R. Papadakis, J. Mol. Liq. 241 (2017) 211 (

R. Papadakis, J. Phys. Chem. B 120 (2016) 9422 (

A. W. Boots, G. R. Haenen, A. Bast, Eur. J. Pharmacol. 585 (2008) 325 (

E. H. Anouar, J. Gierschner, J. L. Duroux, P. Trouillas, Food Chem. 131 (2012) 79 (

A. C. Morosanu, A. C. Benchea, D. Babusca, D. G. Dimitriu, D. O. Dorohoi, Anal. Lett. 50 (2017) 2725 (

Y. Marcus, J. Chem. Soc. Perkin Trans. 2 (1994) 1751 (

R. Papadakis, I. Deligkiozi, K. E. Nowak, J. Mol. Liq. 274 (2019) 715 (

A. Duereh, Y. Sato, R. L. Smith, H. Inomata, J. Phys. Chem. B 122 (2018) 10894 (

L. P. Novaki, N. Keppeler, M. M. N. Kwon, L. T. Paulucci, M. C. K. de Oliveira, F. A. Meireles, W. J. Baader, O. A. El Seoud, Energy Fuels 33 (2019) 58 (

M. R. Islam, F. Warsi, A. B. Khan, T. Kausar, I. Khan, M. Ali, J. Chem. Eng. Data, 64 (2019) 1140 (


Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)