Preferential solvation of quercetin in aqueous aprotic solvent mixtures

Main Article Content

Mohammad Faraji
Ali Farajtabar
http://orcid.org/0000-0002-5510-3782

Abstract

Solvatochromism of quercetin was studied in binary mixtures of water with dimethyl sulfoxide, N,N-dimethylformamide and N,N-dimethyl­acet­amide at 25 °C by UV–Vis measurements. For all mixtures, a non-linear trend was observed in spectral shifts plotted against the bulk mole fractions. Devi­ation from ideal behaviour indicates that the solvation shell of quercetin differs in composition from the bulk because of preferential solvation. The solvent exchange model was applied in the analysis of solvatochromic data in order to quantify the extent of preferential solvation in the case of solute–solvent and solvent–solvent intermolecular interactions. The results show that the solvation shell of quercetin is enriched in aprotic solvent and the complex that was formed by the interaction between water and an aprotic solvent, over the whole compo­sition range. The distribution of the solvent species in the solvation cage was obtained from the calculation of the local mole fractions as a function the bulk composition. It shows that the solvent–solvent interactions have great influence on the solvation behaviour of quercetin in aqueous aprotic solvent mixtures.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. Faraji and A. Farajtabar, “Preferential solvation of quercetin in aqueous aprotic solvent mixtures”, J. Serb. Chem. Soc., vol. 85, no. 2, pp. 227–236, Mar. 2020.
Section
Physical Chemistry

References

C. Reichardt, T. Welton, Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH, Weinheim, 2011 (https://dx.doi.org/10.1002/9783527632220)

Y. Bao, A. Farajtabar, M. Zheng, H. Zhao, Y. Li, J. Chem. Thermodyn. 133 (2019) 161 (https://dx.doi.org/10.1016/j.jct.2019.02.016)

Y. Li, A. Farajtabar, H. Zhao, J. Sol. Chem. 48 (2019) 200 (https://dx.doi.org/10.1007/s10953-019-00857-3)

A. Farajtabar, F. Gharib, Monatsh Chem. 141 (2010) 381 (https://dx.doi.org/10.1007/s00706-010-0277-5)

A. Farajtabar, F. Gharib, J. Solution Chem. 39 (2010) 231 (https://dx.doi.org/10.1007/s10953-010-9496-y)

M. Zheng, G. Chen, J. Chen, A. Farajtabar, H. Zhao, J. Mol. Liq. 276 (2019) 318 (https://dx.doi.org/10.1016/j.molliq.2018.12.027)

F. Naderi, A. Farajtabar, F. Gharib, J. Mol. Liq. 190 (2014) 126 (https://dx.doi.org/10.1016/j.molliq.2013.10.028)

A. Farajtabar, F. Jaberi, F. Gharib, Spectrochim. Acta, A 83 (2011) 213 (https://dx.doi.org/10.1016/j.saa.2011.08.020)

E. Bosch, F. Rived, M. Roses, J. Chem. Soc., Perkin Trans. 2 (1996) 2177 (https://dx.doi.org/10.1039/P29960002177)

M. Roses, C. Rafols, J. Ortega, E. Bosch, J. Chem. Soc., Perkin Trans. 2 (1995) 1607 (https://dx.doi.org/10.1039/P29950001607)

M. Faraji, A. Farajtabar, J. Serb. Chem. Soc. 81 (2016) 1161 (https://dx.doi.org/10.2298/JSC160327060F)

G. S. Uscumlic, J. B. Nikolic, J. Serb. Chem. Soc. 74 (2009) 1335 (https://dx.doi.org/10.2298/JSC0912335U)

D. R. Brkic, A. R. Bozic, V. D. Nikolic, A. D. Marinkovic, H. Elshaflu, J. B. Nikolic, S. Z. Drmanic, J. Serb. Chem. Soc. 81 (2016) 979 (https://dx.doi.org/10.2298/JSC160119049B)

S. N. Z. Prlainovic, M. P. Rancic, I. Stojiljkovic, J. B. Nikolic, S. Z. Drmanic, I. Ajaj, A. D. Marinkovic, J. Serb. Chem. Soc. 83 (2018) 139 (https://dx.doi.org/10.2298/JSC170408003P)

D. Mijin, B. Bozic, J. Ladarevic, L. Matovic, G. Uscumlic, V. Vitnik, Z. Vitnik, Color. Technol. 134 (2018) 478 (https://dx.doi.org/10.1111/cote.12369)

R. Papadakis, J. Mol. Liq. 241 (2017) 211 (https://dx.doi.org/10.1016/j.molliq.2017.05.147)

R. Papadakis, J. Phys. Chem., B 120 (2016) 9422 (https://dx.doi.org/10.1021/acs.jpcb.6b05868)

A. W. Boots, G. R. Haenen, A. Bast, Eur. J. Pharmacol. 585 (2008) 325 (https://dx.doi.org/10.1016/j.ejphar.2008.03.008)

E. H. Anouar, J. Gierschner, J. L. Duroux, P. Trouillas, Food Chem. 131 (2012) 79 (https://dx.doi.org/10.1016/j.foodchem.2011.08.034)

A. C. Morosanu, A. C. Benchea, D. Babusca, D. G. Dimitriu, D. O. Dorohoi, Anal. Lett. 50 (2017) 2725 (https://dx.doi.org/10.1080/00032719.2017.1291657)

Y. Marcus, J. Chem. Soc. Perkin Trans. 2 (1994) 1751 (https://dx.doi.org/10.1039/P29940001751)

R. Papadakis, I. Deligkiozi, K. E. Nowak, J. Mol. Liq. 274 (2019) 715 (https://dx.doi.org/10.1016/j.molliq.2018.10.164)

A. Duereh, Y. Sato, R. L. Smith, H. Inomata, J. Phys. Chem., B 122 (2018) 10894 (https://dx.doi.org/10.1021/acs.jpcb.8b09511)

L. P. Novaki, N. Keppeler, M. M. N. Kwon, L. T. Paulucci, M. C. K. de Oliveira, F. A. Meireles, W. J. Baader, O. A. El Seoud, Energy Fuels 33 (2019) 58 (https://dx.doi.org/10.1021/acs.energyfuels.8b02892)

M. R. Islam, F. Warsi, A. B. Khan, T. Kausar, I. Khan, M. Ali, J. Chem. Eng. Data 64 (2019) 1140 (https://dx.doi.org/10.1021/acs.jced.8b01068).