Quantification of the binding preference of selected dyes at a solid–liquid interface in organized media

Main Article Content

Syed Waqar Hussain Shah
Farman Ali
Iram Bibi

Abstract

The binding behavior of anionic dyes, acid yellow 17 and acid blue 25, at an activated carbon–liquid interface has been investigated in organized media based on aqueous sodium dodecyl sulfate using differential electronic spectroscopy. The quantification of interactions occurring in the system was realized using a simple physical model, emphasizing the displacement of bound dyes from the carbon surface. The quantities of displaced dyes were comparable; however, acid blue 25 was relatively easily desorbed compared to acid yellow 17. These differences can be attributed to differences in the dye size and hydrophobicity. The model is valid for the premicellar region of the surfactant. The results throw light on some characteristics of solid–liquid inter­faces.

Downloads

Metrics

PDF views
193
May 22 '20May 25 '20May 28 '20May 31 '20Jun 01 '20Jun 04 '20Jun 07 '20Jun 10 '20Jun 13 '20Jun 16 '20Jun 19 '203.0
| |

Article Details

How to Cite
[1]
S. W. H. Shah, F. Ali, and I. Bibi, “Quantification of the binding preference of selected dyes at a solid–liquid interface in organized media”, J. Serb. Chem. Soc., vol. 85, no. 5, pp. 661–670, May 2020.
Section
Physical Chemistry

References

REFERENCES

L. Collins, S. Jesse, J. I. Kilpatrick, A. Tselev, O. Varenyk, M. B. Okatan, S. A. L. Weber, A. Kumar, N. Balke, S. V. Kalinin, B. J. Rodriguez, Nat. Commun. 5 (2014) 1 (https://doi.org/10.1038/ncomms4871)

F. Zaera, Chem. Rev. 112 (2012) 2920 (https://doi.org/10.1021/cr2002068)

S. Nasir, M. Z. Hussein, Z. Zainal, N. A. Yusof, Materials (Basel) 11 (2018) 1 (https://doi.org/10.3390/ma11020295)

E. Forgacs, T. Cserháti, G. Oros, Environ. Int. 30 (2004) 953 (https://doi.org/10.1016/j.envint.2004.02.001)

A. Kausar, M. Iqbal, A. Javed, K. Aftab, Z. I. H. Nazli, H. N. Bhatti, S. Nouren, J. Mol. Liq. 256 (2018) 395 (https://doi.org/10.1016/j.molliq.2018.02.034)

W. Lei, D. Portehault, D. Liu, S. Qin, Y. Chen, Nat. Commun. 4 (2013) 1777 (https://doi.org/10.1038/ncomms2818)

D. R. Jones, V. Gomez, J. C. Bear, B. Rome, F. Mazzali, J. D. McGettrick, A. R. Lewis, S. Margadonna, W. A. Al-Masry, C. W. Dunnill, Sci. Rep. 7 (2017) 1 (https://doi.org/10.1038/s41598-017-04240-4)

D. Bhatia, N. R. Sharma, J. Singh, R. S. Kanwar, Crit. Rev. Environ. Sci. Technol. 47 (2017) 1836 (https://doi.org/10.1080/10643389.2017.1393263)

R. C. Bansal, M. Goyal, Activated Carbon Adsorption, CRC Press, Taylor & Francis, Boca Raton, FL, 2005 (ISBN 1420028812)

Z. Simitzis, J. Ioannou, in Activated Carbon, Classifications, Properties and Applications, J. F. Kwiatkowski, Ed., Nova Science Publishers, Inc., New York, 2012 (ISBN 9783540773405)

A. Mukherjee, N. Sekar, S. Panda, Ind. Eng. Chem. Res. 56 (2017) 13543 (https://doi.org/10.1021/acs.iecr.7b03380)

W. Feng, Y. Chai, J. Forth, P. D. Ashby, T. P. Russell, B. A. Helms, Nat. Commun. 10 (2019) 1095 (https://doi.org/10.1038/s41467-019-09042-y)

R. Mahmudov, C. Chen, C. P. Huang, Front. Chem. Sci. Eng. 9 (2015) 194 (https://doi.org/10.1007/s11705-015-1517-3)

D. A. Yaseen, M. Scholz, Int. J. Environ. Sci. Technol. 16 (2019) 1193 (https://doi.org/10.1007/s13762-018-2130-z)

M. Wiśniewska, M. Wawrzkiewicz, E. Polska‑Adach, G. Fijałkowska, O. Goncharuk, Appl. Nanosci. 8 (2018) 867 (https://doi.org/10.1007/s13204-018-0674-3)

N. Erdinç, S. Göktürk, M. Tunçay, Colloids Surfaces, B 75 (2010) 194 (https://doi.org/10.1016/j.colsurfb.2009.08.031)

J. Liu, J. Chen, L. Jiang, X. Wang, Environ. Sci. Pollut. Res. 21 (2014) 1809 (https://doi.org/10.1007/s11356-013-2075-1)

J. Oakes, S. Dixon, Color. Technol. 2 (2003) 9 (https://doi.org/10.1111/j.1478-4408.2003.tb00190.x)

W. Fritz, W. Merk, E. U. Schlunder, Chem. Eng. Sci. 36 (1980) 731 (https://doi.org/10.1016/0009-2509(81)85089-0)

M. Jaroniec, A. Deryło, A. W. Marczewski, Chem. Eng. Sci. 38 (1983) 307 (https://doi.org/10.1016/0009-2509(83)85013-1)

B. Likozar, D. Senica, A. Pavko, Braz. J. Chem. Eng. 29 (2012) 635 (https://doi.org/10.1590/S0104-66322012000300020)

F. Ali, M. Ibrahim, F. Khan, I. Bibi, S. W. H. Shah, Mater. Res. Express 5 (2018) 035405. (https://doi.org/10.1088/2053-1591/aab565)

M. M. Mohamed, J. Colloid Interface Sci. 272 (2004) 28 (https://doi.org/10.1016/j.jcis.2003.08.071)

O. Elovin, S.Y. Larionov, Russ. Chem. Bull. 11 (1962) 491 (https://doi.org/10.1007/BF00909556)

A. L. Rockwood, ChemPhysChem 16 (2015) 1978 (https://doi.org/10.1002/cphc.201500044)

M. Jaroniec, A. Deryeo, Chem. Eng. Sci. 36 (1981) 1017 (https://doi.org/10.1016/0009-2509(81)80088-7)

N. Ben Douissa, S. Dridi-Dhaouadi, M. F. Mhenni, J. Text. Sci. Eng. 6 (2016) 1000240. (https://doi.org/10.4172/2165-8064.1000240)

M. M. M. Bindes, M. R. Franco, Jr., Desalin. Water Treat. 56 (2015) 2890 (https://doi.org/10.1080/19443994.2014.963157)

C. P. Smith, M.Sc Thesis, Georgia Institute of Technology, Atlanta, GA, 1971 (https://smartech.gatech.edu/handle/1853/8280)

Y. Chen, J. Shi, Sci. China Mater. 58 (2015) 241 (https://doi.org/10.1007/s40843-015-0037-2)

N. Riaz, M. Faheem, A. Riaz, Mater. Express 7 (2017) 113 (https://doi.org/10.1166/mex.2017.1354).

Most read articles by the same author(s)