Quantification of the binding preference of selected dyes at solid-liquid interface in organized media

Syed Waqar Hussain Shah, Farman Ali, Iram Bibi

Abstract


The binding behavior of anionic dyes, acid yellow 17 and acid blue 25 at activated carbon-liquid interface has been investigated in organized media based on aqueous sodium lauryl sulfate using differential electronic spectroscopy. The quantification of interactions taking place in the system was done using a simple physical model, emphasizing the displacement of bound dyes from carbon surface. The quantities of displaced dyes were comparable; however, acid blue 25 was relatively easily desorbed compared to acid yellow 17. These differences can be attributed to difference is dye size and hydrophobicity. The model was valid for premicellar region of the surfactant. The results throw light on some characteristics of solid-liquid interface.  

Keywords


advance materials; dye adsorption; electronic spectral patterns; anionic surfactant

Full Text:

PDF (866 kB)

References


L. Collins, S. Jesse, J. I. Kilpatrick, A. Tselev, O. Varenyk, M. B. Okatan, S. A. L. Weber, A. Kumar, N. Balke, S. V. Kalinin, B. J. Rodriguez, Nat. Commun. 5 (2014) 1–8 (https://doi.org/10.1038/ncomms4871)

F. Zaera, Chem. Rev. 112 (2012) 2920–2986. (https://doi.org/10.1021/cr2002068)

S. Nasir, M. Z. Hussein, Z. Zainal, N. A. Yusof, Materials (Basel). 11 (2018) 1–24. (https://doi.org/10.3390/ma11020295)

E. Forgacs, T. Cserháti, G. Oros, Environ. Int. 30 (2004) 953–971. (https://doi.org/10.1016/j.envint.2004.02.001)

A. Kausar, M. Iqbal, A. Javed, K. Aftab, Z. i. H. Nazli, H. N. Bhatti, S. Nouren, J. Mol. Liq. 256 (2018) 395–407. (https://doi.org/10.1016/j.molliq.2018.02.034)

W. Lei, D. Portehault, D. Liu, S. Qin, Y. Chen, Nat. Commun. 4 (2013) 1777. (https://doi.org/10.1038/ncomms2818)

D. R. Jones, V. Gomez, J. C. Bear, B. Rome, F. Mazzali, J. D. McGettrick, A. R. Lewis, S. Margadonna, W. A. Al-Masry, C. W. Dunnill, Sci. Rep. 7 (2017) 1–16. (https://doi.org/10.1038/s41598-017-04240-4)

D. Bhatia, N. R. Sharma, J. Singh, R. S. Kanwar, Crit. Rev. Environ. Sci. Technol. 47 (2017) 1836–1876. (https://doi.org/10.1080/10643389.2017.1393263)

M. Bansal, Roop Chand; Goyal, Activated Carbon Adsorption, CRC Press, Taylor & Francis, FL, USA, 2005.ISBN 1420028812.

Z. Simitzis, J; Ioannou, Activated carboaceous materials based on thermosetting binder precursors, in J. F. Kwiatkowski (Ed.), Act. Carbon Classif. Prop. Appl., Nova Science Publishers, Inc. NY, USA, 2012.ISBN 9783540773405.

A. Mukherjee, N. Sekar, S. Panda, Ind. Eng. Chem. Res. 56 (2017) 13543–13551. (https://doi.org/10.1021/acs.iecr.7b03380)

W. Feng, Y. Chai, J. Forth, P. D. Ashby, T. P. Russell, B. A. Helms, Nat. Commun. 10 (2019) 1095. 1095. (https://doi.org/10.1038/s41467-019-09042-y)

R. Mahmudov, C. Chen, C. P. Huang, Front. Chem. Sci. Eng. 9 (2015) 194–208. (https://doi.org/10.1007/s11705-015-1517-3)

D. A. Yaseen, M. Scholz, Int. J. Environ. Sci. Technol. 16 (2019) 1193–1226. (https://doi.org/10.1007/s13762-018-2130-z)

O. Wiśniewska, Małgorzata; Wawrzkiewicz, Monika; Polska‑Adach, Ewelina; Fijałkowska, Gracja; Goncharuk, Appl. Nanosci. 8 (2018) 867–876. (https://doi.org/10.1007/s13204-018-0674-3)

N. Erdinç, S. Göktürk, M. Tunçay, Colloids Surfaces B Biointerfaces 75 (2010) 194–203. (https://doi.org/10.1016/j.colsurfb.2009.08.031)

J. Liu, J. Chen, L. Jiang, X. Wang, Environ. Sci. Pollut. Res. 21 (2014) 1809–1818. (https://doi.org/10.1007/s11356-013-2075-1)

J. Oakes, S. Dixon, Color. Technol. 2 (2003) 9–13. (https://doi.org/10.1111/j.1478-4408.2003.tb00190.x)

W. Fritz, W. Merk, E. U. Schlunder, Chem. Eng. Sci. 36 (1980) 731–741. (https://doi.org/10.1016/0009-2509(81)85089-0)

M. Jaroniec, A. Deryło, A. W. Marczewski, Chem. Eng. Sci. 38 (1983) 307–311. (https://doi.org/10.1016/0009-2509(83)85013-1)

B. Likozar, D. Senica, A. Pavko, Brazilian J. Chem. Eng. 29 (2012) 635–652. (https://doi.org/10.1590/S0104-66322012000300020)

F. Ali, M. Ibrahim, F. Khan, I. Bibi, S. W. H. Shah, Mater. Res. Express 5 (2018) 035405. (https://doi.org/10.1088/2053-1591/aab565)

M. M. Mohamed, J. Colloid Interface Sci. 272 (2004) 28–34. (https://doi.org/10.1016/j.jcis.2003.08.071)

O. Elovin, S.Y. Larionov, Russ. Chem. Bull. 11 (1962) 491–493. (https://doi.org/10.1007/BF00909556)

A. L. Rockwood, ChemPhysChem 16 (2015) 1978–1991. (https://doi.org/10.1002/cphc.201500044)

M. Jaroniec, A. Deryeo, Chem. Eng. Sci. 36 (1981) 1017–1019. (https://doi.org/10.1016/0009-2509(81)80088-7)

N. Ben Douissa, S. Dridi-Dhaouadi, M. F. Mhenni, J. Text. Sci. Eng. 6 (2016) 1000240. (https://doi.org/10.4172/2165-8064.1000240)

M. M. M. Bindes, M. R. Franco Jr., Desalin. Water Treat. 56 (2015) 2890–2895. (https://doi.org/10.1080/19443994.2014.963157)

C. P. Smith, The sorption of textile dyes by activated carbon, M.Sc Thesis, Georgia Institute of Technology, 1971. (https://smartech.gatech.edu/handle/1853/8280)

Y. Chen, J. Shi, Sci. China Mater. 58 (2015) 241–257. (https://doi.org/10.1007/s40843-015-0037-2)

N. Riaz, M. Faheem, A. Riaz, Mater. Express 7 (2017) 113–122. (https://doi.org/10.1166/mex.2017.1354)




DOI: https://doi.org/10.2298/JSC190413078S

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)