Degradation of Reactive Red 120 dye by a heterogeneous sono-Fenton process with goethite deposited onto silica and calcite sand

Main Article Content

Soraya Garófalo-Villalta
https://orcid.org/0000-0003-4181-7511
Tanya Medina-Espinosa
https://orcid.org/0000-0003-4401-4618
Christian Sandoval-Pauker
https://orcid.org/0000-0002-7831-331X
William Villacis
https://orcid.org/0000-0001-8653-7586
Valerian Ciobotă
https://orcid.org/0000-0003-1603-0434
Florinella Muñoz Bisesti
https://orcid.org/0000-0002-5015-6455
Paul Vargas Jentzsch
http://orcid.org/0000-0002-2983-5824

Abstract

The degradation of Reactive Red 120 dye (RR-120) in synthetic waters was studied. Two processes were considered: homogeneous sono-Fen­ton with iron(II) sulfate and heterogeneous sono-Fenton with synthetic goethite and goethite deposited onto silica and calcite sand (modified catalysts GS and GC, respectively). In 60 min of reaction, the homogeneous sono-Fenton pro­cess allowed a degra­dation of 98.10 %, in contrast with 96.07 % for the heterogeneous sono-Fenton process with goethite at pH 3.0. The removal of RR-120 increased when the modified catalysts were used instead of bare goe­thite. Chemical oxygen demand (COD) and total organic carbon (TOC) mea­surements showed that the highest TOC and COD removals were achieved with the homogeneous sono-Fenton process. Biochemical oxygen demand (BOD5) measurements allowed confirmed that the highest value of BOD5/COD was achieved with a heterogeneous sono-Fenton process (0.88±0.04 with the modi­fied catalyst GC), demonstrating that the biodegradability of the residual org­anic compounds was remarkably improved.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. Garófalo-Villalta, “Degradation of Reactive Red 120 dye by a heterogeneous sono-Fenton process with goethite deposited onto silica and calcite sand”, J. Serb. Chem. Soc., vol. 85, no. 1, pp. 125–140, Feb. 2020.
Section
Environmental Chemistry

References

M. A. Oturan, J.-J. Aaron, Crit. Rev. Environ. Sci. Technol. 44 (2014) 2577 (https://doi.org/10.1080/10643389.2013.829765)

A. Babuponnusami, K. Muthukumar, J. Environ. Chem. Eng. 2 (2014) 557 (https://doi.org/10.1016/j.jece.2013.10.011)

Y. Flores, R. Flores, A. Alvarez Gallegos, J. Mol. Catal., A: Chem. 281 (2008) 184 (https://doi.org/10.1016/j.molcata.2007.10.019)

R. Matta, K. Hanna, S. Chiron, Sci. Total Environ. 385 (2007) 242 (https://doi.org/10.1016/j.scitotenv.2007.06.030)

S. Navalon, M. Alvaro, H. Garcia, Appl. Catal., B 99 (2010) 1 (https://doi.org/10.1016/j.apcatb.2010.07.006)

Y. Zhao, J. Hu, W. Jin, Environ. Sci. Technol. 42 (2008) 5277 (https://doi.org/10.1021/es703253q)

Z.-R. Lin, X.-H. Ma, L. Zhao, Y.-H. Dong, Chemosphere 101 (2014) 15 (https://doi.org/10.1016/j.chemosphere.2013.11.063)

G. B. Ortiz de la Plata, O. M. Alfano, A. E. Cassano, Appl. Catal., B 95 (2010) 1 (https://doi.org/10.1016/j.apcatb.2009.12.005)

Y. Wang, Y. Gao, L. Chen, H. Zhang, Catal. Today 252 (2015) 107 (https://doi.org/10.1016/j.cattod.2015.01.012)

H. Wu, X. Dou, D. Deng, Y. Guan, L. Zhang, G. He, Environ. Technol. 33 (2012) 1545 (https://doi.org/10.1080/09593330.2011.635709)

B. Neppolian, J.-S. Park, H. Choi, Ultrason. Sonochem. 11 (2004) 273 (https://doi.org/10.1016/j.ultsonch.2003.11.001)

H. Zhang, H. Fu, D. Zhang, J. Hazard. Mater. 172 (2009) 654 (https://doi.org/10.1016/j.jhazmat.2009.07.047)

X. Zhong, L. Xiang, S. Royer, S. Valange, J. Barrault, H. Zhang, J. Chem. Technol. Biotechnol. 86 (2011) 970 (https://doi.org/10.1002/jctb.2608)

U. Schwertmann, R. M. Cornell, Iron Oxides in the Laboratory: Preparation and Characterization, Wiley-VCH, Weinheim, 2000, p. 73

A. Scheidegger, M. Borkovec, H. Sticher, Geoderma 58 (1993) 43 (https://doi.org/10.1016/0016-7061(93)90084-X)

J. Anotai, P. Sakulkittimasak, N. Boonrattanakij, M.-C. Lu, J. Hazard. Mater. 165 (2009) 874 (https://doi.org/10.1016/j.jhazmat.2008.10.062)

American Public Health Association, American Water Works Association, Water Environment Federation, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington D.C., 2017

M. E. Broz, R. F. Cook, D. L. Whitney, Am. Mineral. 91 (2006) 135 (https://doi.org/10.2138/am.2006.1844)

M. Muruganandham, J.-S. Yang, J. J. Wu, Ind. Eng. Chem. Res. 46 (2007) 691 (https://doi.org/10.1021/ie060752)

P. Papadopoulos, D. L. Rowell, J. Soil Sci. 39 (1988) 23 (https://doi.org/10.1111/j.1365-2389.1988.tb01191.x)

L. L. De Sousa, R. Salomão, V. L. Arantes, Ceram. Int. 43 (2017) 1362 (https://doi.org/10.1016/j.ceramint.2016.10.0933)

D. Kong, L. D. Wilson, Carbohydr. Polym. 169 (2017) 282 (https://doi.org/10.1016/j.carbpol.2017.04.019)

M. A. Legodi, D. de Waal, Dyes Pigm. 74 (2007) 161 (https://doi.org/10.1016/j.dyepig.2006.01.038)

S. D. Škapin, I. Sondi, J. Colloid Interface Sci. 347 (2010) 221 (https://doi.org/10.1016/j.jcis.2010.03.070)

M. Yoshinari, Y. Oda, H. Ueki, S. Yokose, Biomaterials 22 (2001) 709 (https://doi.org/10.1016/S0142-9612(00)00234-9)

P. Vargas Jentzsch, V. Ciobotă, B. Kampe, P. Rösch, J. Popp, J. Raman Spectrosc. 43 (2012) 514 (https://doi.org/10.1002/jrs.3064)

P. Vargas Jentzsch, V. Ciobotă, P. Rösch, J. Popp, Angew. Chem., Int. Ed. 52 (2013) 1410 (https://doi.org/10.1002/anie.201208319)

C. Balachandran, J. F. Muñoz, T. Arnold, Cem. Concr. Res. 92 (2017) 66 (https://doi.org/10.1016/j.cemconres.2016.11.018)

P. Vargas Jentzsch, B. Kampe, V. Ciobota, P. Rösch, J. Popp, Spectrochim. Acta, A 115 (2013) 697 (http://doi.org/10.1016/j.saa.2013.06.085)

E. C. Le Ru, P. G. Etchegoin, Principles of surface-enhanced Raman spectroscopy, Elsevier, Amsterdam, 2009, p. 12.

S. Rahim Pouran, A. Bayrami, M. S. Shafeeyan, A. A. Abdul Raman, W. M. A. Wan Daud, Acta Chim. Slov. 65 (2018) 166 (https://doi.org/10.17344/acsi.2017.3732)

I. K. Konstantinou, T. A. Albanis, Appl. Catal., B 49 (2004) 1 (https://doi.org/10.1016/j.apcatb.2003.11.010)

M. C. Diwathe, P. R. Gogate, Chem. Eng. J. 246 (2018) 438 (https://doi.org/10.1016/j.cej.2018.04.027)

D. B. Vončina, A. Majcen-Le-Marechal, Dyes Pigm. 59 (2003) 173 (https://doi.org/10.1016/S0143-7208(03)00101-3)

V. K. Saharan, A. B. Pandit, P. S. S. Kumar, S. Anandan, Ind. Eng. Chem. Res. 51 (2012) 1981 (https://doi.org/10.1021/ie200249k)

Y. Wang, L. Gai, W. Ma, H. Jiang, X. Peng, L. Zhao, Ind. Eng. Chem. Res. 54 (2015) 2279 (https://doi.org/10.1021/ie504242k)

Z. Li, J. Sheng, Y. Wang, Y. Xu, J. Hazard. Mater. 254–255 (2013) 18 (https://doi.org/10.1016/j.jhazmat.2013.03.055)

C. A. Demarchi, M. Campos, C. A. Rodrigues, J. Environ. Chem. Eng. 1 (2013) 1350 (https://doi.org/10.1016/j.jece.2013.10.005)

E. Bazrafshan, F. K. Mostafapour, A. R. Hosseini, A. R. Khorshid, A. H. Mahvi, J. Chem. (2013) ID 938374 (https://doi.org/10.1155/2013/938374)

M. Kosmulski, Adv. Colloid Interface Sci. 251 (2018) 115 (https://doi.org/10.1016/j.cis.2017.10.005)

F. Al-Momani, E. Touraud, J. R. Degorce-Dumas, J. Roussy, O. Thomas, J. Photochem. Photobiol., A 153 (2002) 191 (https://doi.org/10.1016/S1010-6030(02)00298-8).

Most read articles by the same author(s)