Degradation of Reactive Red 120 dye by a heterogeneous sono-Fenton process with goethite deposited onto silica and calcite sand
Main Article Content
Abstract
The degradation of Reactive Red 120 dye (RR-120) in synthetic waters was studied. Two processes were considered: homogeneous sono-Fenton with iron(II) sulfate and heterogeneous sono-Fenton with synthetic goethite and goethite deposited onto silica and calcite sand (modified catalysts GS and GC, respectively). In 60 min of reaction, the homogeneous sono-Fenton process allowed a degradation of 98.10 %, in contrast with 96.07 % for the heterogeneous sono-Fenton process with goethite at pH 3.0. The removal of RR-120 increased when the modified catalysts were used instead of bare goethite. Chemical oxygen demand (COD) and total organic carbon (TOC) measurements showed that the highest TOC and COD removals were achieved with the homogeneous sono-Fenton process. Biochemical oxygen demand (BOD5) measurements allowed confirmed that the highest value of BOD5/COD was achieved with a heterogeneous sono-Fenton process (0.88±0.04 with the modified catalyst GC), demonstrating that the biodegradability of the residual organic compounds was remarkably improved.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
M. A. Oturan, J.-J. Aaron, Crit. Rev. Environ. Sci. Technol. 44 (2014) 2577 (https://doi.org/10.1080/10643389.2013.829765)
A. Babuponnusami, K. Muthukumar, J. Environ. Chem. Eng. 2 (2014) 557 (https://doi.org/10.1016/j.jece.2013.10.011)
Y. Flores, R. Flores, A. Alvarez Gallegos, J. Mol. Catal., A: Chem. 281 (2008) 184 (https://doi.org/10.1016/j.molcata.2007.10.019)
R. Matta, K. Hanna, S. Chiron, Sci. Total Environ. 385 (2007) 242 (https://doi.org/10.1016/j.scitotenv.2007.06.030)
S. Navalon, M. Alvaro, H. Garcia, Appl. Catal., B 99 (2010) 1 (https://doi.org/10.1016/j.apcatb.2010.07.006)
Y. Zhao, J. Hu, W. Jin, Environ. Sci. Technol. 42 (2008) 5277 (https://doi.org/10.1021/es703253q)
Z.-R. Lin, X.-H. Ma, L. Zhao, Y.-H. Dong, Chemosphere 101 (2014) 15 (https://doi.org/10.1016/j.chemosphere.2013.11.063)
G. B. Ortiz de la Plata, O. M. Alfano, A. E. Cassano, Appl. Catal., B 95 (2010) 1 (https://doi.org/10.1016/j.apcatb.2009.12.005)
Y. Wang, Y. Gao, L. Chen, H. Zhang, Catal. Today 252 (2015) 107 (https://doi.org/10.1016/j.cattod.2015.01.012)
H. Wu, X. Dou, D. Deng, Y. Guan, L. Zhang, G. He, Environ. Technol. 33 (2012) 1545 (https://doi.org/10.1080/09593330.2011.635709)
B. Neppolian, J.-S. Park, H. Choi, Ultrason. Sonochem. 11 (2004) 273 (https://doi.org/10.1016/j.ultsonch.2003.11.001)
H. Zhang, H. Fu, D. Zhang, J. Hazard. Mater. 172 (2009) 654 (https://doi.org/10.1016/j.jhazmat.2009.07.047)
X. Zhong, L. Xiang, S. Royer, S. Valange, J. Barrault, H. Zhang, J. Chem. Technol. Biotechnol. 86 (2011) 970 (https://doi.org/10.1002/jctb.2608)
U. Schwertmann, R. M. Cornell, Iron Oxides in the Laboratory: Preparation and Characterization, Wiley-VCH, Weinheim, 2000, p. 73
A. Scheidegger, M. Borkovec, H. Sticher, Geoderma 58 (1993) 43 (https://doi.org/10.1016/0016-7061(93)90084-X)
J. Anotai, P. Sakulkittimasak, N. Boonrattanakij, M.-C. Lu, J. Hazard. Mater. 165 (2009) 874 (https://doi.org/10.1016/j.jhazmat.2008.10.062)
American Public Health Association, American Water Works Association, Water Environment Federation, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington D.C., 2017
M. E. Broz, R. F. Cook, D. L. Whitney, Am. Mineral. 91 (2006) 135 (https://doi.org/10.2138/am.2006.1844)
M. Muruganandham, J.-S. Yang, J. J. Wu, Ind. Eng. Chem. Res. 46 (2007) 691 (https://doi.org/10.1021/ie060752)
P. Papadopoulos, D. L. Rowell, J. Soil Sci. 39 (1988) 23 (https://doi.org/10.1111/j.1365-2389.1988.tb01191.x)
L. L. De Sousa, R. Salomão, V. L. Arantes, Ceram. Int. 43 (2017) 1362 (https://doi.org/10.1016/j.ceramint.2016.10.0933)
D. Kong, L. D. Wilson, Carbohydr. Polym. 169 (2017) 282 (https://doi.org/10.1016/j.carbpol.2017.04.019)
M. A. Legodi, D. de Waal, Dyes Pigm. 74 (2007) 161 (https://doi.org/10.1016/j.dyepig.2006.01.038)
S. D. Škapin, I. Sondi, J. Colloid Interface Sci. 347 (2010) 221 (https://doi.org/10.1016/j.jcis.2010.03.070)
M. Yoshinari, Y. Oda, H. Ueki, S. Yokose, Biomaterials 22 (2001) 709 (https://doi.org/10.1016/S0142-9612(00)00234-9)
P. Vargas Jentzsch, V. Ciobotă, B. Kampe, P. Rösch, J. Popp, J. Raman Spectrosc. 43 (2012) 514 (https://doi.org/10.1002/jrs.3064)
P. Vargas Jentzsch, V. Ciobotă, P. Rösch, J. Popp, Angew. Chem., Int. Ed. 52 (2013) 1410 (https://doi.org/10.1002/anie.201208319)
C. Balachandran, J. F. Muñoz, T. Arnold, Cem. Concr. Res. 92 (2017) 66 (https://doi.org/10.1016/j.cemconres.2016.11.018)
P. Vargas Jentzsch, B. Kampe, V. Ciobota, P. Rösch, J. Popp, Spectrochim. Acta, A 115 (2013) 697 (http://doi.org/10.1016/j.saa.2013.06.085)
E. C. Le Ru, P. G. Etchegoin, Principles of surface-enhanced Raman spectroscopy, Elsevier, Amsterdam, 2009, p. 12.
S. Rahim Pouran, A. Bayrami, M. S. Shafeeyan, A. A. Abdul Raman, W. M. A. Wan Daud, Acta Chim. Slov. 65 (2018) 166 (https://doi.org/10.17344/acsi.2017.3732)
I. K. Konstantinou, T. A. Albanis, Appl. Catal., B 49 (2004) 1 (https://doi.org/10.1016/j.apcatb.2003.11.010)
M. C. Diwathe, P. R. Gogate, Chem. Eng. J. 246 (2018) 438 (https://doi.org/10.1016/j.cej.2018.04.027)
D. B. Vončina, A. Majcen-Le-Marechal, Dyes Pigm. 59 (2003) 173 (https://doi.org/10.1016/S0143-7208(03)00101-3)
V. K. Saharan, A. B. Pandit, P. S. S. Kumar, S. Anandan, Ind. Eng. Chem. Res. 51 (2012) 1981 (https://doi.org/10.1021/ie200249k)
Y. Wang, L. Gai, W. Ma, H. Jiang, X. Peng, L. Zhao, Ind. Eng. Chem. Res. 54 (2015) 2279 (https://doi.org/10.1021/ie504242k)
Z. Li, J. Sheng, Y. Wang, Y. Xu, J. Hazard. Mater. 254–255 (2013) 18 (https://doi.org/10.1016/j.jhazmat.2013.03.055)
C. A. Demarchi, M. Campos, C. A. Rodrigues, J. Environ. Chem. Eng. 1 (2013) 1350 (https://doi.org/10.1016/j.jece.2013.10.005)
E. Bazrafshan, F. K. Mostafapour, A. R. Hosseini, A. R. Khorshid, A. H. Mahvi, J. Chem. (2013) ID 938374 (https://doi.org/10.1155/2013/938374)
M. Kosmulski, Adv. Colloid Interface Sci. 251 (2018) 115 (https://doi.org/10.1016/j.cis.2017.10.005)
F. Al-Momani, E. Touraud, J. R. Degorce-Dumas, J. Roussy, O. Thomas, J. Photochem. Photobiol., A 153 (2002) 191 (https://doi.org/10.1016/S1010-6030(02)00298-8).