Degradation of Reactive Red 120 dye by a heterogeneous Sono-Fenton process with goethite deposited onto silica and calcite sand

Soraya Garófalo-Villalta, Tanya Medina-Espinosa, Christian Sandoval-Pauker, William Villacis, Valerian Ciobotă, Florinella Muñoz Bisesti, Paul Vargas Jentzsch

Abstract


The degradation of Reactive Red 120 dye (RR-120) in synthetic waters was studied. Two processes were considered: homogeneous Sono-Fenton with iron (II) sulfate and heterogeneous Sono-Fenton with synthetic goethite and goethite deposited onto silica and calcite sand (modified catalysts GS and GC, respectively). In 60 min of reaction, the homogeneous Sono-Fenton process allowed a degra­dation of 98.10 %, in contrast with 96.07 % for the heterogeneous Sono-Fenton process with goethite at pH 3.0. The removal of RR-120 increased when the modified catalysts were used instead of bare goethite. Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) measurements showed that the highest TOC and COD removals were achieved with the homogeneous Sono-Fenton process. Biochemical Oxygen Demand (BOD5) measurements allowed to find that the highest value of BOD5/COD was achieved with a heterogeneous Sono-Fenton process (0.88±0.04 with the modified catalyst GC), demonstrating that the biodegradability of the residual organic compounds was remarkably improv

Keywords


AOPs; goethite immobilization; ultrasound irradiation; azo dye

Full Text:

PDF (2,010 kB)

References


M. A. Oturan, J. -J. Aaron, Crit. Rev. Environ. Sci. Technol. 44 (2014) 2577 (https://doi.org/10.1080/10643389.2013.829765)

A. Babuponnusami, K. Muthukumar, J. Environ. Chem. Eng. 2 (2014) 557 (https://doi.org/10.1016/j.jece.2013.10.011)

Y. Flores, R. Flores, A. Alvarez Gallegos, J. Mol. Catal. A: Chem. 281 (2008) 184 (https://doi.org/10.1016/j.molcata.2007.10.019)

R. Matta, K. Hanna, S. Chiron, Sci. Total Environ. 385 (2007) 242 (https://doi.org/10.1016/j.scitotenv.2007.06.030)

S. Navalon, M. Alvaro, H. Garcia, Appl. Catal., B 99 (2010) 1 (https://doi.org/10.1016/j.apcatb.2010.07.006)

Y. Zhao, J. Hu, W. Jin, Environ. Sci. Technol. 42 (2008) 5277 (https://doi.org/10.1021/es703253q)

Z. -R. Lin, X. -H. Ma, L. Zhao, Y. -H. Dong, Chemosphere 101 (2014) 15 (https://doi.org/10.1016/j.chemosphere.2013.11.063)

G. B. Ortiz de la Plata, O. M. Alfano, A. E. Cassano, Appl. Catal., B 95 (2010) 1 (https://doi.org/10.1016/j.apcatb.2009.12.005)

Y. Wang, Y. Gao, L. Chen, H. Zhang, Catal. Today 252 (2015) 107 (https://doi.org/10.1016/j.cattod.2015.01.012)

H. Wu, X. Dou, D. Deng, Y. Guan, L. Zhang, G. He, Environ. Technol. 33 (2012) 1545 (https://doi.org/10.1080/09593330.2011.635709)

B. Neppolian, J. -S. Park, H. Choi, Ultrason. Sonochem. 11 (2004) 273 (https://doi.org/10.1016/j.ultsonch.2003.11.001)

H. Zhang, H. Fu, D. Zhang, J. Hazard. Mater. 172 (2009) 654 (https://doi.org/10.1016/j.jhazmat.2009.07.047)

X. Zhong, L. Xiang, S. Royer, S. Valange, J. Barrault, H. Zhang, J. Chem. Technol. Biotechnol. 86 (2011) 970 (https://doi.org/10.1002/jctb.2608)

U. Schwertmann, R. M. Cornell, Iron Oxides in the Laboratory: Preparation and Characterization, Wiley-VCH, Weinheim, Germany, 2000, p. 73.

A. Scheidegger, M. Borkovec, H. Sticher, Geoderma 58 (1993) 43 (https://doi.org/10.1016/0016-7061(93)90084-X)

J. Anotai, P. Sakulkittimasak, N. Boonrattanakij, M. -C. Lu, J. Hazard. Mater. 165 (2009) 874 (https://doi.org/10.1016/j.jhazmat.2008.10.062)

American Public Health Association, American Water Works Association, Water Environment Federation, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington D.C., USA, 2017.

M. E. Broz, R. F. Cook, D. L. Whitney, Am. Mineral. 91 (2006) 135 (https://doi.org/10.2138/am.2006.1844)

M. Muruganandham, J. -S. Yang, J. J. Wu, Ind. Eng. Chem. Res. 46 (2007) 691 (https://doi.org/10.1021/ie060752)

P. Papadopoulos, D. L. Rowell, J. Soil Sci. 39 (1988) 23 (https://doi.org/10.1111/j.1365-2389.1988.tb01191.x)

L. L. De Sousa, R. Salomão, V. L. Arantes, Ceram. Int. 43 (2017) 1362 (https://doi.org/10.1016/j.ceramint.2016.10.0933)

D. Kong, L. D. Wilson, Carbohydr. Polym. 169 (2017) 282 (https://doi.org/10.1016/j.carbpol.2017.04.019)

M. A. Legodi, D. de Waal, Dyes Pigm. 74 (2007) 161 (https://doi.org/10.1016/j.dyepig.2006.01.038)

S. D. Škapin, I. Sondi, J. Colloid Interface Sci. 347 (2010) 221 (https://doi.org/10.1016/j.jcis.2010.03.070)

M. Yoshinari, Y. Oda, H. Ueki, S. Yokose, Biomaterials 22 (2001) 709 (https://doi.org/10.1016/S0142-9612(00)00234-9)

P. Vargas Jentzsch, V. Ciobotă, B. Kampe, P. Rösch, J. Popp, J. Raman Spectrosc. 43 (2012) 514 (https://doi.org/10.1002/jrs.3064)

P. Vargas Jentzsch, V. Ciobotă, P. Rösch, J. Popp, Angew. Chem., Int. Ed. 52 (2013) 1410 (https://doi.org/10.1002/anie.201208319)

C. Balachandran, J. F. Muñoz, T. Arnold, Cem. Concr. Res. 92 (2017) 66 (https://doi.org/10.1016/j.cemconres.2016.11.018)

P. Vargas Jentzsch, B. Kampe, V. Ciobota, P. Rösch, J. Popp, Spectrochim. Acta, Part A 115 (2013) 697 (http://doi.org/10.1016/j.saa.2013.06.085)

E. C. Le Ru, P. G. Etchegoin, Principles of surface-enhanced Raman spectroscopy, Elsevier, Amsterdam, The Netherlands, 2009, p. 12.

S. Rahim Pouran, A. Bayrami, M. S. Shafeeyan, A. A. Abdul Raman, W. M. A. Wan Daud, Acta Chim. Slov. 65 (2018) 166 (https://doi.org/10.17344/acsi.2017.3732)

I. K. Konstantinou, T. A. Albanis, Appl. Catal., B 49 (2004) 1 (https://doi.org/10.1016/j.apcatb.2003.11.010)

M. C. Diwathe, P. R. Gogate, Chem. Eng. J. 246 (2018) 438 (https://doi.org/10.1016/j.cej.2018.04.027)

D. B. Vončina, A. Majcen-Le-Marechal, Dyes Pigm. 59 (2003) 173 (https://doi.org/10.1016/S0143-7208(03)00101-3)

V. K. Saharan, A. B. Pandit, P. S. S. Kumar, S. Anandan, Ind. Eng. Chem. Res. 51 (2012) 1981 (https://doi.org/10.1021/ie200249k)

Y. Wang, L. Gai, W. Ma, H. Jiang, X. Peng, L. Zhao, Ind. Eng. Chem. Res. 54 (2015) 2279 (https://doi.org/10.1021/ie504242k)

Z. Li, J. Sheng, Y. Wang, Y. Xu, J. Hazard. Mater. 254-255 (2013) 18 (https://doi.org/10.1016/j.jhazmat.2013.03.055)

C. A. Demarchi, M. Campos, C. A. Rodrigues, J. Environ. Chem. Eng. 1 (2013) 1350 (https://doi.org/10.1016/j.jece.2013.10.005)

E. Bazrafshan, F. K. Mostafapour, A. R. Hosseini, A. R. Khorshid, A. H. Mahvi, J. Chem. (2013) ID 938374 (https://doi.org/10.1155/2013/938374)

M. Kosmulski, Adv. Colloid Interface Sci. 251 (2018) 115 (https://doi.org/10.1016/j.cis.2017.10.005)

F. Al-Momani, E. Touraud, J. R. Degorce-Dumas, J. Roussy, O. Thomas, J. Photochem. Photobiol., A 153 (2002) 191 (https://doi.org/10.1016/S1010-6030(02)00298-8).




DOI: https://doi.org/10.2298/JSC190506096G

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)