First cobalt complexes with methyl pyruvate semi/thiosemicarbazone – Synthesis, physicochemical and structural characterization
Main Article Content
Abstract
In the reaction of acetone solutions of CoX2∙nH2O (X = Cl, Br) with methyl pyruvate semi/thiosemicarbazone (Hmps, Hmpt) the first Co(II) complexes with these ligands, i.e., [Co(Hmps)(H2O)X2] (X = Cl (1), Br (2)), [Co(Hmpt)2][CoCl4]∙2H2О (3) and [Co(Hmpt)2]Br2∙Me2CO (4) were obtained. Complexes 1 and 2 represent the first examples of metal complexes of Hmps. All the obtained compounds were characterized by elemental analysis, conductometry, magnetic measurements, and IR spectra, and for complexes 2–4, single crystal X-ray diffraction analysis was also performed. The effective magnetic moments were close to the upper limit (5 μB) for complexes 1 and 2, and close to the lower limit (4.4 μB) for complexes 3 and 4, and as such are characteristic for high-spin Co(II) complexes. Structural analysis showed that both ligands coordinate in a neutral form in a tridentate manner, via the ester oxygen, imine nitrogen and the oxygen atom of the ureido (Hmps), or the sulfur atom of the thioureido group (Hmpt). The central metal atoms are situated in a deformed octahedral coordination environment. Complex 2 has cis-Br configuration, while complexes 3 and 4 have mer-configuration.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
S. Padhyé, G. B. Kauffman, Coord. Chem. Rev. 63 (1985) 127 (https://dx.doi.org/10.1016/0010-8545(85)80022-9)
J. S. Casas, M. S. Garcı́a-Tasende, J. Sordo, Coord. Chem. Rev. 209 (2000) 197 (https://dx.doi.org/10.1016/S0010-8545(00)00363-5)
T. S. Lobana, R. Sharma, G. Bawa, S. Khanna, Coord. Chem. Rev. 253 (2009) 977 (https://dx.doi.org/10.1016/J.CCR.2008.07.004)
H. Beraldo, D. Gambino, Mini-Rev. Med. Chem. 4 (2004) 31 (https://dx.doi.org/10.2174/1389557043487484)
C. B. Scarim, D. H. Jornada, M. G. M. Machado, C. M. R. Ferreira, J. L. dos Santos, M. C. Chung, Eur. J. Med. Chem. 162 (2019) 378 (https://dx.doi.org/10.1016/j.ejmech.2018.11.013)
B. Atasever, B. Ülküseven, T. Bal-Demirci, S. Erdem-Kuruca, Z. Solakoğlu, Invest. New Drugs 28 (2010) 421 (https://dx.doi.org/10.1007/s10637-009-9272-2)
D. X. West, S. B. Padhye, P. B. Sonawane, in Complex Chem. Struct. Bond., Vol. 76, Springer, Berlin, 1991, pp. 1–50 (https://dx.doi.org/10.1007/3-540-53499-7_1)
C. Santini, M. Pellei, V. Gandin, M. Porchia, F. Tisato, C. Marzano, Chem. Rev. 114 (2014) 815 (https://dx.doi.org/10.1021/cr400135x)
L. Feng, W. Shi, J. Ma, Y. Chen, F. Kui, Y. Hui, Z. Xie, Sens. Actuators, B 237 (2016) 563 (https://dx.doi.org/10.1016/j.snb.2016.06.129)
A. V. Ablov, N. I. Belichuk, L. F. Chapurina, Zh. Neorg. Khim. 15 (1970) 112
A. V. Ablov, N. V. Gerbeleu, N. Y. Negryatse, M. D. Revenko, Zh. Neorg. Khim. 15 (1970) 123
A. V. Ablov, N. V. Gerbeleu, Zh. Neorg. Khim. 15 (1970) 1854
G. L. Sawhney, J. S. Baijal, S. Chandra, K. B. Pandeya, Acta Chim. Acad. Sci. Hung. 108 (1981) 325
M. D. Timken, S. R. Wilson, D. N. Hendrickson, Inorg. Chem. 24 (1985) 3450 (https://dx.doi.org/10.1021/ic00215a030)
I. F. Burshtein, N. V. Gerbeleu, O. A. Bologa, A. Y. Kon, T. I. Malinovskii, Met. Khim. 3 (1990) 1162
I. F. Burshtein, N. V. Gerbeleu, A. Y. Kon, O. A. Bologa, T. I. Malinovskii, Zh. Strukt. Khim. 28 (1987) 188
D. Kovala-Demertzi, J. Wiecek, J. C. Plakatouras, Z. Ciunik, CrystEngComm 10 (2008) 1291 (https://dx.doi.org/10.1039/B809216H)
M. Belicchi-Ferrari, G. G. Fava, P. Tarasconi, J. Chem. Soc. Dalt. Trans. (1989) 361 (https://dx.doi.org/10.1039/DT9890000361)
M. Belicchi-Ferrari, G. G. Fava, G. Pelosi, P. Tarasconi, Polyhedron 19 (2000) 1895 (https://dx.doi.org/10.1016/S0277-5387(00)00454-X)
Y. M. Chumakov, V. I. Tsapkov, E. Jeanneau, A. P. Gulea, J. Struct. Chem. 54 (2013) 577 (https://dx.doi.org/10.1134/S0022476613030165)
M. Belicchi-Ferrari, G. G. Fava, C. Pelizzi, G. Pelosi, P. Tarasconi, Inorg. Chim. Acta 269 (1998) 297 (https://dx.doi.org/10.1016/S0020-1693(97)05795-2)
R. Chikate, P. Sonawane, A. Kumbhar, S. Padhye, R. J. Butcher, Inorg. Chim. Acta 205 (1993) 59 (https://dx.doi.org/10.1016/S0020-1693(00)87355-7)
M. B. Ferrari, G. G. Fava, C. Pelizzi, P. Tarasconi, J. Chem. Soc. Dalt. Trans. (1992) 2153 (https://dx.doi.org/10.1039/DT9920002153)
J. Wiecek, V. Dokorou, Z. Ciunik, D. Kovala-Demertzi, Polyhedron 28 (2009) 3298 (https://dx.doi.org/10.1016/j.poly.2009.05.012)
G. G. Taran, N. M. Samus, I. D. Samus, V. E. Zavodnik, V. K. Belskii, V. G. Bodyu, Izv. Akad. Nauk Mold. SSR. Ser. Fiz.-Tek. Mat. Nauk 27 (1984) 2
W. Liufang, P. Zhouren, W. Xin, Y. Shuyan, L. Qinhui, W. Qi, Polyhedron 12 (1993) 1505 (https://dx.doi.org/https://doi.org/10.1016/S0277-5387(00)84590-8)
C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Crystallogr., B 72 (2016) 171. (https://dx.doi.org/10.1107/S2052520616003954).
M. Belicchi-Ferrari, G. G. Fava, M. Lanfranchi, C. Pelizzi, P. Tarasconi, Inorg. Chim. Acta 181 (1991) 253 (https://dx.doi.org/10.1016/S0020-1693(00)86818-8)
M. Belicchi-Ferrari, F. Bisceglie, E. Buluggiu, G. Pelosi, P. Tarasconi, Polyhedron 28 (2009) 1160 (https://dx.doi.org/10.1016/j.poly.2009.01.013)
M. Belicchi-Ferrari, F. Bisceglie, E. Buluggiu, G. Pelosi, P. Tarasconi, Polyhedron 29 (2010) 2134 (https://dx.doi.org/10.1016/j.poly.2010.04.009)
M. Belicchi-Ferrari, G. G. Fava, G. Pelosi, M. C. Rodriguez-Argüelles, P. Tarasconi, J. Chem. Soc. Dalt. Trans. (1995) 3035 (https://dx.doi.org/10.1039/DT9950003035)
S. Ianelli, G. Minardi, C. Pelizzi, G. Pelizzi, L. Reverberi, C. Solinas, P. Tarasconi, J. Chem. Soc. Dalt. Trans. (1991) 2113 (https://dx.doi.org/10.1039/DT9910002113)
Rigaku Oxford Diffraction, CrysAlisPro Software system, Rigaku Corporation, Oxford, 2018
G. M. Sheldrick, Acta Crystallogr., A 71 (2015) 3 (https://dx.doi.org/10.1107/S2053273314026370)
G. M. Sheldrick, Acta Crystallogr., C 71 (2015) 3 (https://dx.doi.org/10.1107/S2053229614024218)
C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr. 44 (2011) 1281. (https://dx.doi.org/10.1107/S0021889811043202)
A. L. Spek, Acta Crystallogr., C 71 (2015) 9 (https://dx.doi.org/10.1107/S2053229614024929)
A. L. Spek, Acta Crystallogr., D 65 (2009) 148 (https://dx.doi.org/10.1107/S090744490804362X)
C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler, P. A. Wood, J. Appl. Crystallogr. 53 (2020) (https://dx.doi.org/10.1107/S1600576719014092)
I. J. Bruno, J. C. Cole, M. Kessler, J. Luo, W. D. Sam Motherwell, L. H. Purkis, B. R. Smith, R. Taylor, R. I. Cooper, S. E. Harris, A. Guy Orpen, J. Chem. Inf. Comput. Sci. 44 (2004) 2133. (https://dx.doi.org/10.1021/CI049780B)
K. Momma, F. Izumi, J. Appl. Crystallogr. 44 (2011) 1272 (https://dx.doi.org/10.1107/S0021889811038970)
M. A. Spackman, J. J. McKinnon, CrystEngComm 4 (2002) 378 (https://dx.doi.org/10.1039/B203191B)
M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, M. A. Spackman, CrystalExplorer17, University of Western Australia, 2017
W. J. Geary, Coord. Chem. Rev. 7 (1971) 81 (https://dx.doi.org/10.1016/S0010-8545(00)80009-0)
F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 5th еd., Wiley-Interscience, New York, 1988, p. 731
G. Just, S. Kim, Can. J. Chem. 55 (1977) 427 (https://dx.doi.org/10.1139/v77-063)
C. C. Corrêa, J. E. J. C. Graúdo, L. F. C. de Oliveira, M. V. de Almeida, R. Diniz, Acta Crystallogr., E 67 (2011) o1882 (https://dx.doi.org/10.1107/S160053681102530X)
M. Belicchi-Ferrari, F. Bisceglie, G. Pelosi, P. Tarasconi, R. Albertini, S. Pinelli, J. Inorg. Biochem. 87 (2001) 137 (https://dx.doi.org/10.1016/S0162-0134(01)00321-X)
D. Cremer, J. A. Pople, J. Am. Chem. Soc. 97 (1975) 1354 (https://dx.doi.org/10.1021/ja00839a011).