Synthesis and antiproliferative activity of new thiazole hybrids with [3.3.0]furofuranone or tetrahydrofuran scaffolds Scientific paper

Main Article Content

Vesna Kojić
https://orcid.org/0000-0002-2399-0807
Miloš Svirčev
https://orcid.org/0000-0003-1808-1315
Sanja Djokić
https://orcid.org/0000-0003-0448-6282
Ivana Kovačević
https://orcid.org/0000-0001-8218-7590
Marko V. Rodić
https://orcid.org/0000-0002-4471-8001
Bojana Srećo Zelenović
https://orcid.org/0000-0003-0216-2583
Velimir Popsavin
https://orcid.org/0000-0001-9910-2987
Mirjana Popsavin
https://orcid.org/0000-0002-0924-1041

Abstract

New thiazole hybrids were synthesized and evaluated for their in vitro cytotoxicity against a panel of human malignant cell lines. The key steps in the synthesis of hybrids 37 involved the initial condensation of appropriate aldo­nonitriles with cysteine ethyl ester hydrochloride, followed by subsequent treatment of resulting thiazolines with diazabicycloundecene to form the thiaz­ole ring. Bioiso­steres 8 and 14 have been prepared after the stereoselective addition of 2-(tri­methylsilyl)thiazole to the hemiacetals obtained by periodate cleavage of terminal diol functionality in the suitably protected d-glucose der­ivatives. The obtained analogues showed various antiproliferative activities in the cultures of several tumour cell lines. Hybrid 6 was the most potent in HeLa cells, exhibiting more than 10 and 4 times stronger activity than both leads 1 and 2, respectively. The most active compound in Raji cells was hybrid 12, which was nearly 2-fold more potent than the clinical antitumour drug doxo­rubicin. All analogues were more potent in A549 cells with respect to lead 1, while compounds 6 and 7 were slightly more active than doxorubicin. Prelim­inary structure–activity relationship analysis revealed that the presence of a cinnamate group at the C-3 pos­ition in analogues of type 7 increases the act­ivity of resulting molecular hybrids.

Downloads

Metrics

PDF views
571
Apr 16 '23Apr 19 '23Apr 22 '23Apr 25 '23Apr 28 '23May 01 '23May 04 '23May 07 '23May 10 '23May 13 '238
|

Article Details

How to Cite
[1]
V. Kojić, “Synthesis and antiproliferative activity of new thiazole hybrids with [3.3.0]furofuranone or tetrahydrofuran scaffolds: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 5, pp. 467–479, Apr. 2023.
Section
Organic Chemistry
Author Biographies

Miloš Svirčev, University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad

    

Bojana Srećo Zelenović, University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad

   

References

H. M. Sampath Kumar, L. Herrmann, S. B. Tsogoeva, Bioorg. Med. Chem. Lett. 30 (2020) 127514 (https://doi.org/10.1016/j.bmcl.2020.127514)

V. Ivasiv, C. Albertini, A. E. Gonçalves, M. Rossi, M. L. Bolognesi, Curr. Top. Med. Chem. 19 (2019) 1694 (https://doi.org/10.2174/1568026619666190619115735)

C. Viegas-Junior, A. Danuello, V. da Silva Bolzani, E. J. Barreiro, C. A. Manssour Fraga, Curr. Med. Chem. 14 (2007) 1829 (https://doi.org/10.2174/092986707781058805)

А. Petrou, M. Fesatidou, A. Geronikaki, Molecules 26 (2021) 3166 (https://doi.org/10.3390/molecules26113166)

D. S. Bhagat, P. A. Chawla, W. B. Gurnule, S. K. Shejul, G. S. Bumbrah, Curr. Org. Chem. 25 (2021) 819 (https://doi.org/10.2174/1385272825999210101234704)

M. Svirčev, M. Popsavin, A. Pavić, B. Vasiljević, M. V. Rodić, S. Djokić, J. Kesić, B. Srećo Zelenović, V. Popsavin, V. Kojić, Bioorg. Chem. 121 (2022) 105691 (https://doi.org/10.1016/j.bioorg.2022.105691)

X.-S. Peng, R. M. P. Ylagan, Y. M. Siu, H. N. C. Wong, Chem. Asian J. 10 (2015) 2070 (https://doi.org/10.1002/asia.201500288)

X. Fang, J. E. Anderson, C. Chang, P. E. Fanwick, J. L. McLaughlin, J. Chem. Soc. Perkin Trans. I (1990) 1655 (https://doi.org/10.1039/P19900001655)

K. Malek, M. S. Boosalis, K. Waraska, B. S. Mitchell, D. G. Wright, Leukemia Res. 28 (2004) 1125 (https://doi.org/10.1016/j.leukres.2004.03.003)

D. G. Wright, M. Boosalis, K. Malek, K. Waraska, Leukemia Res. 28 (2004) 1137 (https://dx.doi.org/10.1016/j.leukres.2004.03.004)

А. P. Rauter, J. A. Figueiredo, I. M. Ismael, Carbohydr. Res. 188 (1989) 19 (https://dx.doi.org/10.1016/0008-6215(89)84054-6)

P. Köll, A. Wernicke, J. Kovács, A. Lützen, J. Carbohydr. Chem. 19 (2000) 1019 (http://dx.doi.org/10.1080/07328300008544132)

D. A. Scudiero, R. H. Shoemaker, K. D. Paull, A. Monks, S. Tierney, T. H. Nofziger, M. J. Currens, D. Seniff, M. R. Boyd, Cancer Res. 48 (1988) 4827 (https://cancerres.aacrjournals.org/content/48/17/4827)

I. Kovačević, M. Popsavin, G. Benedeković, J. Kesić, V. Kojić, D. Jakimov, T. Srdić-Rajić, G. Bogdanović, V. Divjaković, V. Popsavin, Eur. J. Med. Chem. 134 (2017) 293 (http://dx.doi.org/10.1016/j.ejmech.2017.03.088)

S. Valverde, M. Martin-Lomas, B. Herradon, S. Garcia-Ochoa, Tetrahedron 43 (1987) 1895 (https://doi.org/10.1016/S0040-4020(01)81502-7)

B. Neises, W. Steglich, Angew. Chem. Int. Ed. Engl. 17 (1978) 522 (https://doi.org/10.1002/anie.197805221)

P. De, M. Baltas, F. Bedos-Belval, Curr. Med. Chem. 18 (2011) 1672 (https://doi.org/10.2174/092986711795471347)

E. Pontiki, A. Peperidou, I. Fotopoulos, D. Hadjipavlou-Litina, Curr. Pharm. Biotechnol. 19 (2018) 1019 (https://doi.org/10.2174/1389201019666181112102702)

L.‐S. Feng, J.‐B. Cheng, W.‐Q. Su, H.‐Z. Li, T. Xiao, D.‐A. Chen, Z.‐L. Zhang, Arch. Pharm. 355 (2022) 2200052 (https://doi.org/10.1002/ardp.202200052)

G. Benedeković, J. Francuz, I. Kovačević, M. Popsavin, B. Srećo Zelenović, V. Kojić, G. Bogdanović, V. Divjaković, V. Popsavin, Eur. J. Med. Chem. 82 (2014) 449 (http://dx.doi.org/10.1016/j.ejmech.2014.05.081)

M. Svirčev, G. Benedeković, I. Kovačević, M. Popsavin, V. Kojić, D. Jakimov, T. Srdić-Rajić, M. V. Rodić, V. Popsavin, Tetrahedron 74 (2018) 4761 (https://doi.org/10.1016/j.tet.2018.07.046)

А. Dondoni, G. Fantin, M. Fogagnolo, A. Medici, Tetrahedron 43 (1987) 3533 (https://doi.org/10.1016/S0040-4020(01)81646-X)

T. D. Inch, Carbohydr. Res. 5 (1967) 53 (https://doi.org/10.1016/0008-6215(67)85007-9)

C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Crystallogr., B 72 (2016) 171 (https://doi.org/10.1107/S2052520616003954)

M. Sundaralingam, Biopolymers 7 (1969) 821 (https://doi.org/10.1002/bip.1969.360070602)

W. Seanger, Principles of Nucleic Acid Structure, Springer-Verlag, New York, 1984

D. Cremer, J. A. Pople, J. Am. Chem. Soc. 97 (1975) 1354 (https://doi.org/10.1021/ja00839a011)

C. Altona, M. Sundaralingam, J. Am. Chem. Soc. 94 (1972) 8205 (https://doi.org/10.1021/ja00778a043)

H. P. M. de Leeuw, C. A. G. Hasnoot, C. Altona, Isr. J. Chem. 20, (1980) 108 (https://doi.org/10.1002/ijch.198000059)

А. Dondoni, M.-C. Scherrmann, J. Org. Chem. 59 (1994) 6404 (https://doi.org/10.1021/jo00100a050).

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

You may also start an advanced similarity search for this article.