Effects of moisture and temperature on pesticide stability in corn flour

Main Article Content

Yetong Liu
Xu Qin
Qiusheng Chen
Qiang Zhang
Ping Yin
Yongze Guo

Abstract

Corn flour has been stored at different moisture content (without and with 10 % water) and temperatures (–20, 4 and 25 °C). A modified quick, easy, cheap, effective, rugged and safe (QuEChERS) method was applied to deter­mine the degradation rate of five common pesticides (imidacloprid, carben­dazim, triadimefon, acetochlor and metolachlor) during the stored process using high-performance liquid chromatography with a diode array detector and gas chromatography with an electron capture detector. The results showed that there was almost no degradation on five pesticides at –20 °C in corn flour whether with or without water, and the half-life was 69.3–693.2 days. The deg­radation rate ranged from 1.7 to 7.8 % after ten days of application. Under 25 °C and 10 % moisture content, the half-life was sharply reduced to 5.8–14.4 days. Under this condition, the degradation rate ranged from 40.6 to 68.4 % after ten days of application, and the sequence from high to low of the five pesticides. The degradation rates were as follows: carbendazim, imidacloprid, acetochlor, metolachlor and triadimefon. Therefore, low temperature and dry­ing were beneficial to the storage of corn flour, but unfavorable to the deg­radation of pesticides in corn flour.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
Y. Liu, X. Qin, Q. Chen, Q. Zhang, P. Yin, and Y. Guo, “Effects of moisture and temperature on pesticide stability in corn flour”, J. Serb. Chem. Soc., vol. 85, no. 2, pp. 191–201, Mar. 2020.
Section
Biochemistry & Biotechnology

References

FAOs Office for Corporate Communication, The State of Food and Agriculture, Food and Agriculture Organization of the United Nations, Roma, 2016 (http://www.fao.org/3/a-i6030e.pdf)

N. Colbach, A. Fernier, V. Le Corre, A. Messéan, H. Darmency, Environ. Sci. Pollut. Res. 24 (2017) 11582 (https://doi.org/10.1007/s11356-017-8591-7)

S. T. DeLiberto, S. J. Werner, Pest. Manage. Sci. 72 (2016) 1813 (https://doi.org/10.1002/ps.4330)

Q. Yang, P. Balint-Kurti, M. L. Xu, Mol. Plant 10 (2017) 402 (https://doi.org/10.1016/j.molp.2017.02.004)

S. Sitaramaraju, N. V. V. S. D. Prasad, V. Chenga reddy, E. Narayana, J. Chem. Pharm. Sci. 3 (2014) 75 (https://www.jchps.com/specialissues/Special%20issue3/15%20jchps-%20si3%20S.%20Sitaramaraju%2075-79.pdf)

M. Chen, P. Xu, G. M. Zeng, C. P. Yang, D. L. Huang, J. C. Zhang, Biotechnol. Adv. 33 (2015) 745 (https://doi.org/10.1016/j.biotechadv.2015.05.003)

S. Andersson, S. I. Nilsson, Soil Biol. Biochem. 33 (2001) 1181 (https://doi.org/10.1016/S0038-0717(01)00022-0)

B. Antizar-Ladislao, K. Spanova, A. J. Beck, N. J. Russell, Int. Biodeter. Biodegr. 61 (2008) 357 (https://doi.org/10.1016/j.ibiod.2007.10.002)

S. Hemmamda, M. Calmon, J. P. Calmon, Pest. Manage. Sci. 40 (1994) 71 (https://doi.org/10.1002/ps.2780400112)

J. Patsias, E. Papadopoulou-Mourkidou, J. Chromatogr., A 904 (2000) 171 (https://doi.org/10.1016/S0021-9673(00)00927-4)

I. A. K. Afridi, Z. Parveen, S. Z. Masud, J. Stored Prod. Res. 37 (2001) 199 (https://doi.org/10.1016/S0022-474X(00)00020-5)

M. F. Cengiz, M. Certel, H. Göcmen, Food Chem. 98 (2006) 127 (https://doi.org/10.1016/j.foodchem.2005.05.064)

J. Deplagne, J. Vial, V. Pichon, B. Lalere, G. Hervouet, M. C. Hennion, J. Chromatogr., A 1 (2006) 31 (https://doi.org/10.1016/j.chroma.2006.04.085)

H. Kobayashi, M. Nishida, O. Matano, S. Goto, J. Agr. Food Chem. 40 (1992) 76 (https://doi.org/10.1021/jf00013a015)

K. Maštovská, S. J. Lehotay, J. Chromatogr,. A 1040 (2004) 259 (https://doi.org/10.1016/S0021-9673(04)00591-6)

M. Puchalski, G. Horvath, M. Loughran, W. Koskinen, J. Environ. Qual. 28 (1999) 726 (https://doi.org/10.2134/jeq1999.00472425002800020042x)

U. Uygun, R. Özkara, A. Özbey, H. Koksel, Food Chem. 100 (2007) 1165 (https://doi.org/10.1016/j.foodchem.2005.10.063)

M. Anastassiades, S. J. Lehotay, D. Stajnbaher, F. J. Schenck, J. AOAC Int. 86 (2003) 412 (https://naldc.nal.usda.gov/download/555/PDF)

F. J. Schenck, J. E. Hobbs, Bull. Environ. Contam. Toxicol. 73 (2004) 24 (https://doi.org/10.1007/s00128-004-0388-y)

P. Payá, M. Anastassiades, D. Mack, I. Sigalova, B. Tasdelen, J. Oliva, A. Barba, Anal. Bioanal. Chem. 389 (2007) 1697 (https://doi.org/10.1007/s00216-007-1610-7)

I. G. Cara, F. D. Lipșa, M. S. Cara, L. Burtan, D. Țopa, G, Jităreanu, AgroLife Sci. J. 6 (2017) 48 (http://agrolifejournal.usamv.ro/pdf/vol.VI_1/Art6.pdf)

P. Y. Cao, X. Y. Wang, F. M. Liu, E. C. Zhao, L. J. Han, Bull. Environ. Contam. Toxicol. 80 (2008) 391 (https://doi.org/10.1007/s00128-008-9359-z)

R. Akoijam, B. Singh, Bull. Environ. Contam. Toxicol. 92 (2014) 609 (https://doi.org/10.1007/s00128-013-1190-5)

J. E. Garcia, J. Kirchhoff, F. Grossmann, J. Environ. Sci. Health, B 26 (1991) 427 (https://doi.org/10.1080/03601239109372746)

J. L. Wu, H. D. Wei, X. F. Sui, J. Lin, T. Y. Wang, G. Q. Fen, J. Xue, Bull. Environ. Contam. Toxicol. 84 (2010) 469 (https://doi.org/10.1007/s00128-010-9970-7)

W. Li, Y. Ma, L. Li, D. M. Qin, Y. J. Wu, Chemosphere 82 (2011) 829 (https://doi.org/10.1016/j.chemosphere.2010.11.027)

F. A. D. Sousa, A. I. G. Costa, R. F. Teófilo, A. A. Neves, M. E. L. I. D. Queiroz, G. P. D. Pinho, Food Chem. 135 (2012) 179 (https://doi.org/10.1016/j.foodchem.2012.04.063)

OECD, Oecd Guidelines for the Testing of Chemicals Vol. 1, 2007, p. 1 (https://doi.org/10.1787/9789264061927-en)

P. E. Athanasopoulos, C. Pappas, N. V. Kyriakidis, A. Thanos, Food Chem. 91 (2005) 235 (https://doi.org/10.1016/j.food chem.2003.10.018)

H. Sabik, R. Jeannot, J. Chromatogr., A 879 (2000) 73 (https://doi.org/10.1016/S0021-9673(00)00169-2)

K. Aboulfadl, C. De Potter, M. Prévost, S. Sauvé, Chem. Cent. 4 (2010) 1 (https://doi.org/10.1186/1752-153X-4-10)

P. E. Athanasopoulos, N. B. Kyriakidis, I. Georgitsanakou, J. Agric. Food Chem. 48 (2000) 4896 (https://doi.org/10.1021/jf991354g).