Properties of humic acids from copper tailings 20 years after reclamation

Authors

  • Svjetlana B. Radmanović Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade https://orcid.org/0000-0002-3416-6792
  • Mirjana M. Marković Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade
  • Uroš D. Jovanović Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade
  • Maja D. Gajić-Kvaščev Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade
  • Djuro M. Čokeša Chemical Dynamics Laboratory, Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade
  • Jasmina A. Lilić Serbia ZiJin Bor Copper, 19210 Bor

DOI:

https://doi.org/10.2298/JSC190717112R

Keywords:

Technosols, top soil restoration, revegetation, humification degree

Abstract

Part of Cu post flotation tailings of Serbia ZiJin Bor Copper, Serbia, was reclaimed by restoration of top soil with arable soils, and revegetation in 1991. Humic acids isolated from these Technosols were investigated to find out if their properties underwent any changes since reclamation. Two groups of control samples were used. Elemental composition (CHNS analysis) falls within the range of average soil humic acids. Humic acids belong to the type B pointing out to its lower humification degree (UV–Vis). Relative abundances of functional groups are ranged as follows: polysaccharide C ³ aromatic C > carboxyl C > OH group > aliphatic C. Aromaticity indexes are low, 1.88–3.25 (ATR-FTIR). Basic units at pH 10 are in the 11.7–26.8 nm range. Pro­nounced reaggregation (1462‑–5218 nm) at pH 3 points out to less expressed humic acid sol stability, as well as to increase in aromatic condensation degree (dynamic light scattering). No significant changes have occurred in technosol humic acids since the recultivation, confirming stability of their properties over time (PCA). Never­theless, humic acids from very strongly acidic Technosols show higher humify­cation degree possibly originating from arable soils used in reclamation, but more likely from low soil pH and low litter input, results of unsuccessful reclamation.

References

C. Néel, H. Bril, A. Courtin-Nomade, J.-P. Dutreuil, Geoderma 111 (2003) 1 (https://doi.org/10.1016/S0016-7061(02)00237-9)

E. V. Abakumov, T. Cajthaml, J. Brus, J. Frouz, J Soils Sediments 13 (2013) 491 (https://doi.org/10.1007/s11368-012-0579-9)

C. Bini, S. Gaballo, Quater. Internat. 156–157 (2006) 70 (https://doi.org/10.1016/j.quaint.2006.05.033)

A. Bradshaw, Ecol. Eng. 8 (1997) 255 (https://doi.org/10.1016/S0925-8574(97)00022-0)

O. Onuaguluchi, Ö. Eren, Constr. Build. Mater. 37 (2012) 723 (http://dx.doi.org/10.1016/j.conbuildmat.2012.08.009)

J. Lilić, S. Cupać, B. Lalević, V. Andrić, M Gajić-Kvaščev. J. Soil Sci. Plant Nutr. 14 (2014) 161 (https://scielo.conicyt.cl/pdf/jsspn/v14n1/aop1314.pdf)

D. Kasowska, K. Gediga, Z. Spiak, Environ. Sci. Pollut. Res. 25 (2018) 824 (https://doi.org/10.1007/s11356-017-0766-8)

M. M. Kononova, Humus of virgin and cultivated soils, in Soil Components, Vol. 1: Organic Components, J. E. Gieseking, Ed., Springer Verlag, New York, 1975, p. 475 (ISBN 0-387-06861-9)

O. V. Vishnyakova, G. D. Chimitdorzhieva, Eurasian Soil Sci. 41 (2008) 704 (https://doi.org/10.1134/S1064229308070041)

G. Barančíková, N. Senesi, G. Brunetti, Geoderma 78 (1997) 251 (https://doi.org/10.1016/S0016-7061(97)00033-5)

S. Chaudhuri, L. M. Mcdonald, J. Skousen, E. M. Pena-Yewtukhiw, Land Degrad. Develop. 26 (2015) 237 (https://doi.org/10.1002/ldr.2202)

M. I. Dergacheva, O. A. Nekrasova, M. V. Okoneshnikova, D. I. Vasil’eva, D. A. Gavrilov, K. O. Ochur, E. E. Ondar, Contemp. Probl. Ecol. 5 (2012) 497 (https://doi.org/10.1134/S1995425512050022)

B. Dębska, M. Drąg, E. Tobiasova, Pol. J. Environ. Stud. 21 (2012) 603 (http://eds.b.ebscohost.com/eds/detail/detail?vid=3&sid=1ccfbd18-66df-4da1-9f0c-9b8f4f21c331%40sessionmgr101&bdata=JnNpdGU9ZWRzLWxpdmU%3d#AN=76625260&db=aph)

International Humic Supsances Society, Source Materials for IHSS Samples, Standard samples, http://humic-substances.org/source-materials-for-ihss-samples (15 May 2017)

US Department of Agriculture – Natural Resources Conservation Service, Elli¬ott Series, https://soilseries.sc.egov.usda.gov/OSD_Docs/E/ELLIOTT.html (15 May 2017)

M. Carter, Soil sampling and methods of analysis, Lewis Publishers, Boca Raton, FL, 1993 (ISBN 0-87371-861-5)

P. Boguta, V. D'Orazio, Z. Sokołowska, N. Senesi, J. Geochem. Explor. 168 (2016) 119 (https://doi.org/10.1016/j.gexplo.2016.06.004)

C. Parata, R. Chaussod, J. Lévêquea, F. Andreuxa, Soil Biol. Biochem. 37 (2005) 673 (https://doi.org/10.1016/j.soilbio.2004.08.025)

K. Kumada, Chemistry of Soil Organic Matter, Elsevier Science, Amsterdam, 1988 (ISBN 0-444-98936-6)

D. Dick, H. Knicker, L. Ávila, Jr.A. Inda, E. Giasson, C. Bissan, Org. Geochem. 37 (2006) 1537 (https://doi.org/10.1016/j.orggeochem.2006.06.017)

U. Jovanović, M. Marković, S. Cupać, Z.Tomić, J. Plant Nutr. Soil Sci. 176 (2013) 674 (https://doi.org/10.1002/jpln.201200346)

J. Rice, P. Maccarthy, Org. Geochem. 17 (1991) 635 (https://doi.org/10.1016/0146-6380(91)90006-6)

J. Liu, J. Wang, Y. Chen, H. Lippold, J. Lippmann-Pipke, J. Environ. Sci. 22 (2010) 1695 (https://doi.org/10.1016/S1001-0742(09)60308-9)

S. Siong Fong, M. Mohamed, Org. Geochem. 38 (2007) 967 (https://doi.org/10.1016/j.orggeochem.2006.12.010)

A. Traversa, V. D’Orazio, G.N. Mezzapesa, E. Bonifacio, K. Farrag, N. Senesi, G. Brunetti, Chemosphere 111 (2014) 184 (https://doi.org/10.1016/j.chemosphere.2014.03.063)

C. Plaza, N. Senesi, G. Brunetti, D. Mondelli, Bioresour. Technol. 98 (2007) 1964 (https://doi.org/10.1016/j.biortech.2006.07.051)

N. Senesi, V. DʹOrazio, G. Ricca, Geoderma 116 (2003) 325 (https://doi.org/10.1016/S0016-7061(03)00107-1)

A. Vergnoux, M. Guiliano, R. DiRocco, M. Domeizel, F. Théraulaz, P. Doumenq, Environ. Res. 111 (2011) 205 (https://doi.org/10.1016/j.envres.2010.03.005)

J. Pajączkowska, A. Sułkowska, W.W. Sułkowski, M. Jędrzejczyk, J. Mol. Struct. 651–

–653 (2003) 141 (https://doi.org/10.1016/S0022-2860(03)00103-0)

N. E. Palmer, R. von Wandruszka, Fresen. J. Anal. Chem. 371 (2001) 951 (https://doi.org/10.1007/s002160101037)

R. Sutton, G. Sposito, Environ. Sci. Technol. 39 (2005) 9009 (https://doi.org/10.1021/es050778q)

M. Klučáková, K. Vĕžníková, J. Mol. Struct. 1144 (2017) 33 (https://doi.org/10.1016/j.molstruc.2017.05.012)

B. A. G. De Melo, F. L. Motta, M. H. A. Santana, Mater. Sci. Eng., C 62 (2016) 967 (http://dx.doi.org/10.1016/j.msec.2015.12.001)

X. J. Mao, K. Fang, A. Schmidt-Rohr, H. Carmo, M. Lakhwinder, M. Thompson, Geoderma 140 (2007) 17 (https://doi.org/10.1016/j.geoderma.2007.03.014)

V. Asensio, F. A. Vega, E. F. Covelo, Chemosphere 95 (2014) 511 (https://doi.org/10.1016/j.chemosphere.2013.09.108).

Published

2020-03-30

How to Cite

[1]
S. B. Radmanović, M. M. Marković, U. D. Jovanović, M. D. Gajić-Kvaščev, D. M. Čokeša, and J. A. Lilić, “Properties of humic acids from copper tailings 20 years after reclamation”, J. Serb. Chem. Soc., vol. 85, no. 3, pp. 406-419, Mar. 2020.

Issue

Section

Environmental Chemistry

Most read articles by the same author(s)