Adsorption-desorption behaviour of clomazone in Regosol and Chernozem agricultural soils

Rada D. Đurović-Pejčev, Svjetlana B. Radmanović, Zorica P. Tomić, Lazar M. Kaluđerović, Vojislava P. Bursić, Ljiljana R. Šantrić

Abstract


Studies of adsorption and desorption of pesticides by soils are important for understanding and predicting their fate and transport in the environment. Considering the agricultural and environmental relevance of clomazone, its sorption-desorption behaviour were studied in two widespread Serbian agricultural soil types named Regosol and Chernozem. Both phenomena are well-described by the Freundlich equation, which shows that clomazone is generally sorbed more to organic matter than to the mineral soil fractions. Chernozem, a soil containing more of both organic matter and clay, was found to bind more, and desorb less herbicide, than Regosol. Higher desorption hysteresis obtained for Chernozem could be attributed to its larger number of high-energy sorption sites, compared to Regosol. In both soils, the hysteresis effect increases with increase in initial clomazone concentration in the soil-water system, while the percentage of desorbed amount during successive desorption cycles decreases. The presented adsorption-desorption study shows that soil composition plays an important role in clomazone behaviour and fate in the environment, and a significantly reduced probability of contamination of both the deeper soil layers and groundwater may be expected when this herbicide is found in humus-rich soils.

Keywords


pesticides; sorption; soil; modelling

Full Text:

PDF (1,125 kB)

References


C. MacBean, The Pesticide Manual, A World Compendium, 14th ed., British Crop Protection Council, Hampshire, UK, 2006 (ISBN: 1-901396-14-2)

Tim priređivača, Pesticidi u poljoprivredi i šumarstvu u Srbiji, devetnaesto izmenjeno i dopunjeno izdanje, Društvo za zaštitu bilja Srbije, Beograd, Srbija, 2018 (ISBN: 978-86-83017-33-1)

A. Andres, G. Concenço, G. Theisen, F. Vidotto, A. Ferrero, Crop Prot. 53 (2013) 103 (https://doi.org/10.1016/j.cropro.2013.06.012)

S. Hatrík, J. Tekel, J. Chromatog. A 733 (1996) 217 (https://doi.org/10.1016/0021-9673(95)00725-3)

R. Wintersteiger, B. Goger, H. Krautgartner, J. Chromatog. A 846 (1999) 349–357 (https://doi.org/10.1016/S0021-9673(99)00429-X)

R. Zanella, E. G. Primel, F. F. Gonçalves, M. H. S. Kurz, C. M. Mistura, J. Sep. Sci. 26 (2003) 935 (https://doi.org/10.1002/jssc.200301309)

A. Gunasekara, I. Dela Cruz, M. Curtis, V. Claassen, R. Tjeerdema, Pest. Manag. Sci. 65 (2008) 711 (https://doi.org/10.1002/ps.1733)

K. Kirksey, R. Hayes, W. Krueger, C. Mullins, T. Mueller, Weed Sci. 44 (1996) 959 (https://www.jstor.org/stable/4045767)

L. F. Li, G. X. Li, R. B. Yang, Z. Y. Guo, X. Y. Liao, J. Environ. Sci. 16 (2004) 678 (http://www.jesc.ac.cn/jesc_en/ch/reader/create_pdf.aspx?file_no=20040432&year_id=2004&quarter_id=4&falg=1)

C. Xu, W. Liu, G. Sheng, Sci. Total Environ. 392 (2008) 284 (https://doi.org/10.1016/j.scitotenv.2007.11.033)

W. Haung, W. J. J. Weber, J. Contam. Hydrol. 31 (1998) 129 (https://doi.org/10.1016/S0169-7722(97)00056-9)

OECD standard: OECD guidelines for testing of chemicals, proposal for updating guideline 106—adsorption/desorption using a batch equilibrium method (1997)

IUSS Working Group WRB, World reference base for soil resources 2014 - International soil classification system for naming soils and creating legends for soil maps, update 2015, http://www.fao.org/3/i3794en/I3794en.pdf, (accessed 14 July 2019.)

M. R. Carter, E. G. Gregorich, Soil sampling and methods of analysis, 2nd ed., CRC Press Taylor  Francis Group, Boca Raton, USA, 2008 (ISBN: 978-0-8493-3586-0 )

D. L. Sparks, Environmental Soil Chemistry, 1st ed., Academic Press, Inc., San Diego, USA, 1995 (ISBN: 0-12-656445-0)

M. Arienzo, A. Buondonno, Toxicol. Environ. Chem. 39 (1993) 193 (https://doi.org/10.1080/02772249309357917)

B. M. Jenks, F. W. Roeth, A. R. Martin, D. L. McCallister, Weed Sci. 46 (1998) 132 (https://doi.org/10.1017/S0043174500090299)

M. Bekbölet, O. Yenigün, I. Yücel, Water Air Soil Poll. 111 (1999) 75 (https://doi.org/10.1023/A:1005089612111)

T. Mervosh, G. Sims, E. Stoller, T. Ellsworth, J. Agric. Food Chem. 43 (1995) 2295 (https://doi.org/10.1021/jf00056a062)

C. S. Mosquera-Vivas, M. J. Martinez, G. García-Santos, J. A. Guerrero-Dallos, Chemosphere 190 (2018) 393 (https://doi.org/10.1016/j.chemosphere.2017.09.143)

S. Qian, H. Zhu, B. Xiong, G. Zheng, J. Zhang, W. Xu, Environ. Sci. Poll. Res. 24 (2017) 11493 (https://doi.org/10.1007/s11356-017-8800-4)

M. P. Azcarate, J. C. Montoya, W. C. Koskinen, J. Environ. Sci. Heal. - Part B Pestic. Food Contam. Agric. Wastes 50 (2015) 229 (https://doi.org/10.1080/03601234.2015.999583)

N. Kumar, I. Mukherjee, E. Varghese, Environ. Monitor. Assess. 187 (2015) 61 (https://doi.org/10.1007/s10661-015-4280-5).




DOI: https://doi.org/10.2298/JSC190917122D

Copyright (c) 2019 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)