The use of Raman and XPS spectroscopy to study the cathode material of LiFePO4/C

Authors

  • Vadym Galaguz V.I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, 32-34 Acad. Palladina Ave., Kyiv, 03142
  • Oleksandr Korduban V.I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, 32-34 Acad. Palladina Ave., Kyiv, 03142
  • Eduard Panov V.I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, 32-34 Acad. Palladina Ave., Kyiv, 03142
  • Sergiy Malovanyi V.I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, 32-34 Acad. Palladina Ave., Kyiv, 03142

DOI:

https://doi.org/10.2298/JSC190910011G

Keywords:

battery cathodes, functional groups, Li-ion

Abstract

Using Raman spectroscopy and X-ray photoelection spectroscopy, synthesized lithium iron(II) phosphate (LiFePO4) and carbon coated nanocom­posites LiFePO4/С, synthesized by annealing LiFePO4 with glucose for 1 and 12 h at 700 °C, have been investigated. According to XPS data, the synthesis conditions of LiFePO4/С nanocomposite (700 °C, 1 h) facilitate the reduction of iron, Fe3+ ® Fe2+, on the sample surface. Also according to C1s spectra, sp2C-sp2C is the main bond type in the samples under investigation. Contri­but­ions relating to C–O, C=O, C–O–C, O–C=O functional groups are also present. According to X-ray diffraction analysis, a 12-h synthesis of LiFePO4/C nano­composite leads to the formation of impurities. According to Raman spectra, the annealing time does not affect the quality of carbon coating: the peak intensity ratio of bands D and G has a value of 1.06 for the material annealed for 1 h and 1.04 for LiFePO4/С nanocomposite after annealing for 12 h.

References

T. V. Satyavani, A. K. Srinivas, P. S. Subba Rao, Eng. Sci. Technol. Intern. J. 19 (2016) 178 (http://dx.doi.org/10.1016/j.jestch.2015.06.002)

Z. Yang, Y. Dai, S. Wang, J. Yu, J. Mater. Chem., A 4 (2016) 8210 (http://dx.doi.org/10.1039/c6ta05048d)

D. Zhao, Y. Feng, Y. Wang, Y. Xia, Electrochim. Acta 88 (2013) 632 (http://dx.doi.org/10.1016/j.electacta.2012.10.101)

Y. D. Cho, G. T. K. Fey, H. M. Kao, J. Power Sources 189 (2009) 256 (http://dx.doi.org/10.1016/j.jpowsour.2008.09.053)

V. Galaguz, S. Malovanyi, E. Panov, J. Serb. Chem. Soc. 83 (2018) 1123 (https://doi.org/10.2298/JSC171028036G)

D. Briggs, M. P. Seach, Practical surface analysis by Auger and X-ray photoelectron spectroscopy, John Wiley and Sons, New York, 1983 (https://doi.org/10.1002/sia.740060611)

P. Swain, M. Viji, P. S. V. Mocherla, C. Sudakar J. Power Sources 293 (2015) 613 (http://dx.doi.org/10.1016/j.jpowsour.2015.05.110)

K. Bazzi, B. P. Mandal, M. Nazri, V. M. Naik, V. K. Garg, A. C. Oliveira, P. P. Vaishnava, G. A. Nazri, R. Naik, J. Power Sources 265 (2014) 67 (http://dx.doi.org/10.1016/j.jpowsour.2014.04.069)

Y. Long, Y. Shu, X. Ma, M. Ye, Electrochim. Acta 117 (2014) 105 (http://dx.doi.org/10.1016/j.electacta.2009.09.029)

Y. Kadoma, J. M. Kim, K. Abiko, K. Ohtsuki, K. Ui, N. Kumagai, Electrochim. Acta 55 (2010) 1034 (http://dx.doi.org/10.1016/j.electacta.2009.09.029)

B. Zhao, X. Yu, R. Cai, R. Ran, H. Wang, Z. Shao, J. Mater. Chem. 22 (2012) 2900 (https://doi.org/10.1039/c1jm14362j)

А. Fedorkova, R. Orinаkovа, A. Orinаk, M. Kupkova, H.-D. Wiemhofer, J. N. Audinot, J. Guillot, Solid State Sci. 14 (2012) 1238 (http://dx.doi.org/10.1016/j.solidstatesciences.2012.06.010)

Y. Chen, K. Xiang, W. Zhou, Y. Zhu, N. Bai, C. Han, J. Alloys Compd. 749 (2018), 1063 (https://doi.org/10.1016/j.jallcom.2018.03.265)

Z. Cabаn-Huertas, O. Ayyad, D. Dubal, P. Gomez-Romero, Sci. Rep. 6 (2016) 27024 (http://dx.doi.org/10.1038/srep27024)

A. F. Orliukas, K. Z. Fung, V. Venckute, V. Kazlauskienė, J. Miškinis, A. Dindune, Z. Kanepe, J. Ronis, A. Maneikis, T. Salkus, A. Kezionis, Lith. J. Phys. 54 (2014) 106 (https://doi.org/10.3952/physics.v54i2.2919)

M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Laua, A. R. Gerson, R. St. C. Smart, Appl. Surf. Sci. 257 (2011) 2717 (https://doi.org/10.1016/j.apsusc.2010.10.051)

I. Uhlig, R. Szargan, H. W. Nesbitt, K. Laajalehto, Appl. Surf. Sci. 179 (2001) 222 (https://doi.org/10.1016/S0169-4332(01)00283-5)

A. P. Grosvenor, B. A. Kobe, M. C. Biesinger, N. S. McIntyre, Surf. Interface Anal. 36 (2004) 1564 (https://doi.org/10.1002/sia.1984).

Published

2020-08-25

How to Cite

[1]
V. Galaguz, O. Korduban, E. Panov, and S. Malovanyi, “The use of Raman and XPS spectroscopy to study the cathode material of LiFePO4/C”, J. Serb. Chem. Soc., vol. 85, no. 8, pp. 1047-1054, Aug. 2020.

Issue

Section

Physical Chemistry