The use of Raman and XPS spectroscopy to study the cathode material of LiFePO4/C

Main Article Content

Vadym Galaguz
Oleksandr Korduban
Eduard Panov
Sergiy Malovanyi


Using Raman spectroscopy and X-ray photoelection spectroscopy, synthesized lithium iron(II) phosphate (LiFePO4) and carbon coated nanocom­posites LiFePO4/С, synthesized by annealing LiFePO4 with glucose for 1 and 12 h at 700 °C, have been investigated. According to XPS data, the synthesis conditions of LiFePO4/С nanocomposite (700 °C, 1 h) facilitate the reduction of iron, Fe3+ ® Fe2+, on the sample surface. Also according to C1s spectra, sp2C-sp2C is the main bond type in the samples under investigation. Contri­but­ions relating to C–O, C=O, C–O–C, O–C=O functional groups are also present. According to X-ray diffraction analysis, a 12-h synthesis of LiFePO4/C nano­composite leads to the formation of impurities. According to Raman spectra, the annealing time does not affect the quality of carbon coating: the peak intensity ratio of bands D and G has a value of 1.06 for the material annealed for 1 h and 1.04 for LiFePO4/С nanocomposite after annealing for 12 h.


Download data is not yet available.


Metrics Loading ...

Article Details

How to Cite
V. Galaguz, O. Korduban, E. Panov, and S. Malovanyi, “The use of Raman and XPS spectroscopy to study the cathode material of LiFePO4/C”, J. Serb. Chem. Soc., vol. 85, no. 8, pp. 1047–1054, Aug. 2020.
Physical Chemistry


T. V. Satyavani, A. K. Srinivas, P. S. Subba Rao, Eng. Sci. Technol. Intern. J. 19 (2016) 178 (

Z. Yang, Y. Dai, S. Wang, J. Yu, J. Mater. Chem., A 4 (2016) 8210 (

D. Zhao, Y. Feng, Y. Wang, Y. Xia, Electrochim. Acta 88 (2013) 632 (

Y. D. Cho, G. T. K. Fey, H. M. Kao, J. Power Sources 189 (2009) 256 (

V. Galaguz, S. Malovanyi, E. Panov, J. Serb. Chem. Soc. 83 (2018) 1123 (

D. Briggs, M. P. Seach, Practical surface analysis by Auger and X-ray photoelectron spectroscopy, John Wiley and Sons, New York, 1983 (

P. Swain, M. Viji, P. S. V. Mocherla, C. Sudakar J. Power Sources 293 (2015) 613 (

K. Bazzi, B. P. Mandal, M. Nazri, V. M. Naik, V. K. Garg, A. C. Oliveira, P. P. Vaishnava, G. A. Nazri, R. Naik, J. Power Sources 265 (2014) 67 (

Y. Long, Y. Shu, X. Ma, M. Ye, Electrochim. Acta 117 (2014) 105 (

Y. Kadoma, J. M. Kim, K. Abiko, K. Ohtsuki, K. Ui, N. Kumagai, Electrochim. Acta 55 (2010) 1034 (

B. Zhao, X. Yu, R. Cai, R. Ran, H. Wang, Z. Shao, J. Mater. Chem. 22 (2012) 2900 (

А. Fedorkova, R. Orinаkovа, A. Orinаk, M. Kupkova, H.-D. Wiemhofer, J. N. Audinot, J. Guillot, Solid State Sci. 14 (2012) 1238 (

Y. Chen, K. Xiang, W. Zhou, Y. Zhu, N. Bai, C. Han, J. Alloys Compd. 749 (2018), 1063 (

Z. Cabаn-Huertas, O. Ayyad, D. Dubal, P. Gomez-Romero, Sci. Rep. 6 (2016) 27024 (

A. F. Orliukas, K. Z. Fung, V. Venckute, V. Kazlauskienė, J. Miškinis, A. Dindune, Z. Kanepe, J. Ronis, A. Maneikis, T. Salkus, A. Kezionis, Lith. J. Phys. 54 (2014) 106 (

M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Laua, A. R. Gerson, R. St. C. Smart, Appl. Surf. Sci. 257 (2011) 2717 (

I. Uhlig, R. Szargan, H. W. Nesbitt, K. Laajalehto, Appl. Surf. Sci. 179 (2001) 222 (

A. P. Grosvenor, B. A. Kobe, M. C. Biesinger, N. S. McIntyre, Surf. Interface Anal. 36 (2004) 1564 (

Most read articles by the same author(s)