The use of Raman and XPS spectroscopy to study the cathode material of LiFePO4/C
Main Article Content
Abstract
Using Raman spectroscopy and X-ray photoelection spectroscopy, synthesized lithium iron(II) phosphate (LiFePO4) and carbon coated nanocomposites LiFePO4/С, synthesized by annealing LiFePO4 with glucose for 1 and 12 h at 700 °C, have been investigated. According to XPS data, the synthesis conditions of LiFePO4/С nanocomposite (700 °C, 1 h) facilitate the reduction of iron, Fe3+ ® Fe2+, on the sample surface. Also according to C1s spectra, sp2C-sp2C is the main bond type in the samples under investigation. Contributions relating to C–O, C=O, C–O–C, O–C=O functional groups are also present. According to X-ray diffraction analysis, a 12-h synthesis of LiFePO4/C nanocomposite leads to the formation of impurities. According to Raman spectra, the annealing time does not affect the quality of carbon coating: the peak intensity ratio of bands D and G has a value of 1.06 for the material annealed for 1 h and 1.04 for LiFePO4/С nanocomposite after annealing for 12 h.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
T. V. Satyavani, A. K. Srinivas, P. S. Subba Rao, Eng. Sci. Technol. Intern. J. 19 (2016) 178 (http://dx.doi.org/10.1016/j.jestch.2015.06.002)
Z. Yang, Y. Dai, S. Wang, J. Yu, J. Mater. Chem., A 4 (2016) 8210 (http://dx.doi.org/10.1039/c6ta05048d)
D. Zhao, Y. Feng, Y. Wang, Y. Xia, Electrochim. Acta 88 (2013) 632 (http://dx.doi.org/10.1016/j.electacta.2012.10.101)
Y. D. Cho, G. T. K. Fey, H. M. Kao, J. Power Sources 189 (2009) 256 (http://dx.doi.org/10.1016/j.jpowsour.2008.09.053)
V. Galaguz, S. Malovanyi, E. Panov, J. Serb. Chem. Soc. 83 (2018) 1123 (https://doi.org/10.2298/JSC171028036G)
D. Briggs, M. P. Seach, Practical surface analysis by Auger and X-ray photoelectron spectroscopy, John Wiley and Sons, New York, 1983 (https://doi.org/10.1002/sia.740060611)
P. Swain, M. Viji, P. S. V. Mocherla, C. Sudakar J. Power Sources 293 (2015) 613 (http://dx.doi.org/10.1016/j.jpowsour.2015.05.110)
K. Bazzi, B. P. Mandal, M. Nazri, V. M. Naik, V. K. Garg, A. C. Oliveira, P. P. Vaishnava, G. A. Nazri, R. Naik, J. Power Sources 265 (2014) 67 (http://dx.doi.org/10.1016/j.jpowsour.2014.04.069)
Y. Long, Y. Shu, X. Ma, M. Ye, Electrochim. Acta 117 (2014) 105 (http://dx.doi.org/10.1016/j.electacta.2009.09.029)
Y. Kadoma, J. M. Kim, K. Abiko, K. Ohtsuki, K. Ui, N. Kumagai, Electrochim. Acta 55 (2010) 1034 (http://dx.doi.org/10.1016/j.electacta.2009.09.029)
B. Zhao, X. Yu, R. Cai, R. Ran, H. Wang, Z. Shao, J. Mater. Chem. 22 (2012) 2900 (https://doi.org/10.1039/c1jm14362j)
А. Fedorkova, R. Orinаkovа, A. Orinаk, M. Kupkova, H.-D. Wiemhofer, J. N. Audinot, J. Guillot, Solid State Sci. 14 (2012) 1238 (http://dx.doi.org/10.1016/j.solidstatesciences.2012.06.010)
Y. Chen, K. Xiang, W. Zhou, Y. Zhu, N. Bai, C. Han, J. Alloys Compd. 749 (2018), 1063 (https://doi.org/10.1016/j.jallcom.2018.03.265)
Z. Cabаn-Huertas, O. Ayyad, D. Dubal, P. Gomez-Romero, Sci. Rep. 6 (2016) 27024 (http://dx.doi.org/10.1038/srep27024)
A. F. Orliukas, K. Z. Fung, V. Venckute, V. Kazlauskienė, J. Miškinis, A. Dindune, Z. Kanepe, J. Ronis, A. Maneikis, T. Salkus, A. Kezionis, Lith. J. Phys. 54 (2014) 106 (https://doi.org/10.3952/physics.v54i2.2919)
M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Laua, A. R. Gerson, R. St. C. Smart, Appl. Surf. Sci. 257 (2011) 2717 (https://doi.org/10.1016/j.apsusc.2010.10.051)
I. Uhlig, R. Szargan, H. W. Nesbitt, K. Laajalehto, Appl. Surf. Sci. 179 (2001) 222 (https://doi.org/10.1016/S0169-4332(01)00283-5)
A. P. Grosvenor, B. A. Kobe, M. C. Biesinger, N. S. McIntyre, Surf. Interface Anal. 36 (2004) 1564 (https://doi.org/10.1002/sia.1984).