The correlation of plasma protein binding and molecular properties of selected antifungal drugs

Main Article Content

Jadranka V. Odović
Milkica A. Crevar Sakač
Zorica B. Vujić

Abstract

Antifungal agents are the group of drugs commonly prescribed in the treatment of fungal infections, which are widely spread among the global popu­lation. Their properties, such as absorption, distribution, metabolism, route of elimination or plasma protein binding (PPB), considerably influence their therapeutic success, while a number of the molecular physicochemical pro­perties of the drug notably influence all these processes. Lipophilicity (log P), molecular weight (Mw), volume (Vol), polar surface area (PSA) and solubility (log S) play important roles in drug absorption, penetration into tis­sues, distribution and route of elimination or the degree of plasma protein bind­ing. In this study, the relationships between these five molecular properties of eight antifungal drugs and their plasma protein binding data obtained from relevant literature were investigated. The Selected physicochemical molecular descriptors of the drug were calculated using software packages. The estab­lished relationships between PPB and PSA; Mw; Vol and log S were showed relatively poor correlation (r < 0.35). The best correlation was obtained for the relationship between PPB data and the lipophilicity descriptor X log P3 (correlation coefficient r = 0.55). In further investigation, multiple linear reg­res­sion analysis was applied. The best correlation was obtained with applic­at­ion of lipophilicity with polar surface area (r = 0.918) and volume (r = 0.916) or molecular weight (= 0.896) as independent variables.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
J. V. Odović, M. A. Crevar Sakač, and Z. B. Vujić, “The correlation of plasma protein binding and molecular properties of selected antifungal drugs”, J. Serb. Chem. Soc., vol. 85, no. 7, pp. 897–907, Jul. 2020.
Section
Theoretical Chemistry

References

R. J. Perfect, Nat. Rev. Drug Discov. 16 (2017) 603 (https://doi:10.1038/nrd.2017.46)

www. pharmafactz.com,https://pharmafactz.com/medicinal–chemistry–of–antifungal–drugs/ (date accessed 19.09.2019)

J. E. Nett, D. R. Andes, Infect. Dis. Clin. North Am. 30 (2016) 51 (https://doi.org/10.1016/j.idc.2015.10.012)

M. A. Ghannoum, L.B. Rice, Clin. Microbiol. Rev. 12 (1999) 501 (https://doi:10.1128/CMR.12.4.501)

R. Bellmann, Curr. Clin. Pharmacol. 2 (2007) 37 (https://doi.org/10.2174/157488407779422311)

M. Schäfer–Korting, H. C. Korting, F. Amann, R. Peuser, A. Lukacs, Antimicrob. Agents. Chemother. 35 (1991) 2053 (https://doi:10.1128/AAC.35.10.2053)

H. J. Schmitt, J. Andrade, F. Edwards, Y. Niki, E. Bernard, D. Armstrong, Eur. J. Clin. Microbiol. Infect. Dis. 9) (1990) 832 (https://doi.org/10.1007/BF01967386)

N. S. Ryder, L. Frank, J. Med. Vet. Mycol. 30 (1992) 451 (https://doi.org/10.1080/02681219280000611)

D. Gonzalez, S. Schmidt, H. Derendorf, Clin. Microbiol. Rev. 26 (2013) 274 (https://doi.org/10.1128/CMR.00092–12)

M. Schäfer–Korting M. H. C. Korting, W. Rittler, W. Obermüller, Infection 23 (1995) 292 (https://doi.org/10.1007/BF01716289)

J. Kujawski, H. Popielarska, A. Myka, B. Drabinska, M. Bernard, CMST 18 (2012) 81 (https://doi.org/10.12921/cmst.2012.18.02.81–88)

T. L. Lemke, D. A. Williams, The Foye's Principles of Medicinal Chemistry, 7th ed., Lippincott Williams & Wilkins, Philadelphia, PA, 2013 (ISBN-13: 978-1-6091-3345-0)

A. C. Moffat, M. D. Osselton, B. Widdop, Clarkes Analysis of Drugs and Poisons, 4th ed., Pharmaceutical Press, London, 2011 (ISBN 978-0-8536-9711-4)

www.drugbank.ca, https://www.drugbank.ca/interax/multi_search (date accessed 19.09.2019)

www.molinspiration.com, https://www.molinspiration.com/cgi-bin/properties (date accessed 19.09.2019)

www.vcclab.org, http://www.vcclab.org/lab/alogps/ (date accessed 19.09.2019)

Y. H. Zhao, J. Le, M. H. Abraham, A. Hersey, P. J. Eddershaw, C. N. Luscombe, D. Boutina, G. Beck, B. Sherbone, I. Cooper, J. A. Platts, J. Pharm. Sci. 90 (2001) 749 (https://doi.org/10.1002/jps.1031)

Y. H. Zhao, M. H. Abraham, J. Le, A. Hersey, C. N. Luscombe, G. Beck, B. Sherborne, I. Cooper, Pharm. Res. 19 (2002) 1446 (https://doi.org/10.1023/A:1020444330011)

R. Mannhold, G. I. Poda, I. V. Tetko, J. Pharm. Sci. 98 (2009) 861 (https://doi.org/10.1002/jps.21494 )

R. Estrada-Tejedor, N. Sabaté, F. Broto, S. Nonell, Afinidad 70 (2013) 250 (https://www.raco.cat/index.php/afinidad/article/view/273741/361891)

A.G. Asuero, A. Sayago, A.G. Gonzalez, Crit. Rev. Anal. Chem. 36 (2006) 41 (https://doi.org/10.1080/10408340500526766)

E. H. Kerns, L. Di, Drug-like Properties: Concepts, Structure Design and Methods: from ADME to Toxicity Optimization. Elsevier, San Diego, CA, 2008 (ISBN: 978-0-1236-

-9520-8).

Most read articles by the same author(s)