The use of mucilage extracted from Opuntia ficus indica as microencapsulating shell

Main Article Content

Hanedi Elhleli
Faten Mannai
Ramzi Khiari
https://orcid.org/0000-0003-4446-9014
Younes Moussaoui
https://orcid.org/0000-0003-0329-2443

Abstract

This study was aimed at investigating the micro-formulation of cap­sules using natural biopolymers, such as cactus mucilage (CM), carboxymethyl cellulose sodium salt (CMCNa) and chitosan (Chi) as the wall material, for the transport and supply of sunflower oil. CM samples were extracted from Opuntia ficus indica (OFI) by precipitation at different supernatant pH values (2, 4 and 12). The extracted natural polysaccharide and the resulting microcap­sules were characterized by different experimental techniques. Fourier trans­form infrared spectroscopy analysis of the CM showed the presence of uronic acid units and sugars. Scanning electron microscopy revealed that most par­ticles were adhered together, causing the formation of compact, linked agglo­merates, which resulted in different microstructures with irregular shapes. All oil–core microcapsules were characterized, and the results showed that the different shell materials could be used to microencapsulate sunflower oil. Among them, the microcapsule crosslinked with CM and Chi was the most suitable, with the highest encapsulation efficiency (95 %). This coacervation led to the narrowest size distribution of the capsules, with diameters ranging from 1 to 5 μm. Optical microscopy confirmed the deposition of coacervate droplets around oil drops and clearly showed that the formation of coacervated particles and their deposition onto oil droplets were successive events.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
H. Elhleli, F. Mannai, R. Khiari, and Y. Moussaoui, “The use of mucilage extracted from Opuntia ficus indica as microencapsulating shell”, J. Serb. Chem. Soc., vol. 86, no. 1, pp. 25–38, Jan. 2021.
Section
Biochemistry & Biotechnology
Author Biographies

Hanedi Elhleli, Materials, Environment and Energy Laboratory (UR14ES26), Faculty of Sciences of Gafsa, University of Gafsa; Faculty of Sciences of Gabes, University of Gabes, Tunisia

Materials, Environment and Energy Laboratory (UR14ES26), Faculty of Sciences of Gafsa, University of Gafsa, Tunisia.

Faten Mannai, rials, Environment and Energy Laboratory (UR14ES26), Faculty of Sciences of Gafsa, University of Gafsa. Tunisia

Materials, Environment and Energy Laboratory (UR14ES26), Faculty of Sciences of Gafsa, University of Gafsa, Tunisia.

Ramzi Khiari, University of Monastir, Faculty of Sciences, UR13 ES 63 - Research Unity of Applied Chemistry & Environment, 5000 Monastir; Higher Institute of Technological Studies of Ksar Hellal, Department of Textile; University of Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France

University of Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France

Younes Moussaoui, 6Organic Chemistry Laboratory (LR17ES08), Faculty of Sciences of Sfax, University of Sfax; Faculty of Sciences of Gafsa, University of Gafsa, Tunisia

Organic Chemistry Laboratory (LR17ES08), Faculty of Sciences of Sfax, University of Sfax, Tunisia.

References

C. Thies, in Encyclopiedia of Polymer Science Engineering, H. F. Mark, N. M. Bikales, C. G. Overberger, G. Menges (Eds.), 2nd ed., Vol. 9, Wiley, 1987. pp. 724–745 (ISBN: 9780471809418)

W. C. Griffin, Solid essential oil concentrate and process of preparing the same (1951), U. S. Patent No. 2,556,410

B. K. Green, L. Scheleicher, Manifold record material (1956), U. S. Patent No. 2,730,456

A. Gharsallaoui, Food Res. Int. 40 (2007) 1107 (https://doi. org/10. 1016/j. foodres. 2007. 07. 004)

R. R. Esfahani, H. Jun, S. Rahmani, A. Miller, J. Lahann, ACS Omega 30 (2017) 2839 (https://doi. org/10. 1021/acsomega. 7b00570)

B. Gomez, F. J. Barba, R. Domínguez, P. Putnik, D. B. Kovacevic, M. Pateiro, F. Toldra, J. M. Lorenzo, Trends Food Sci. Tech. 82 (2018) 135 (https://doi. org/10. 1016/j. tifs. 2018. 10. 006)

G. Ozkan, P. Franco, I. De Marco, J. Xiao, E. Capanoglu, Food Chem. 272 (2019) 494 (https://doi. org/10. 1016/j. foodchem. 2018. 07. 205)

G. Orive, E. Santos, J. L. Pedraz, R. M. Hernandez, Adv. Drug Deliver Rev. 67–68 (2014) 3 (https://doi. org/10. 1016/j. addr. 2013. 07. 009)

L. Zhao, J. Luo, H. Wang, G. Song, G. Tang, Appl. Therm. Eng. 99 (2016) 495 (http://dx. doi. org/10. 1016%2Fj. applthermaleng. 2015. 12. 111)

A. Nesterenko, I. Alric, F. Silvestre, V. Durrieu, Ind. Crop. Prod. 42 (2013) 469 (https://doi. org/10. 1016/j. indcrop. 2012. 06. 035)

B. N. Estevinho, F. Rocha, Application of Biopolymers in Microencapsulation Processes, Biopolymers for Food Design, Handbook of Food Bioengineering, Elsevier, 2018, p. 191 (ISBN: 9780128115015)

T. A. Comunian, C. S. Favaro-Trindade, Food Hydrocolloids 61 (2016) 442 (https://doi. org/10. 1016/j. foodhyd. 2016. 06. 003)

I. J. Joye, D. J. McClements, Curr. Opin. Colloid Interface Sci. 19 (2014) 417 (https://doi. org/10. 1016/j. cocis. 2014. 07. 002)

G. K. Kouassi, V. Gogineni, T. Ahmad, N. M. Gowda, M. S. Boley, N. Koissi, in Advances in Applied Nanotechnology for Agriculture; Б. Park, М. Appell (Eds.), ACS Symposium Series 1143 (2013) pp. 221–234

C. Schmitt, C. Sanchez, S. Desobry-Banon, J. Hardy, Crit. Rev. Food Sci. 38 (1998) 689 (https://doi. org/10. 1080/10408699891274354)

R. Khiari, N. Meksi, M. F. Mhenni, M. N. Belgacem, E. Mauret, Fiber Polym. 12 (2011) 587 (https://doi. org/10. 1007/s12221-011-0587-1)

S. Mansouri, R. Khiari, F. Bettaieb, A. El-Gendy, M. F. Mhenni, J. Polym. Environ. 23 (2015) 190 (https://doi. org/10. 1007/s10924-014-0691-6)

I. Moussa, R. Khiari, A. Moussa, M. N. Belgacem, M. F. Mhenni, Fiber. Polym. 20 (2019) 933 (https://doi. org/10. 1007/s12221-019-8665-x)

L. Medina-Torres, E. Brito-De La Fuente, B. Torrestiana-Sanchez, R. Katthain, Food Hydrocolloids 14 (2000) 417 (https://doi. org/10. 1016/S0268-005X(00)00015-1)

C. Sáenz, E. Sepúlveda, B. Matsuhiro, J. Arid Environ. 57 (2004) 275 (https://doi. org/10. 1016/S0140-1963(03)00106-X)

I. Sanchez-Ortega, B. E. Garcia-Almendarez, E. M. Santos-Lopez, L. R. Reyes-Gonzalez, C. Regalado, Food Hydrocolloids 52 (2016) 906 (https://doi. org/10. 1016/j. foodhyd. 2015. 09. 004)

A. Bernardino-Nicanor, E. N. Hinojosa-Hernandez, J. M. S. Juarez-Goiz, J. L. Montanez-Soto, M. E. Ramirez-Ortiz, L. Gonzalez-Cruz, J. Food Sci. Tech. 52 (2015) 343 (https://doi. org/10. 1007/s13197-013-0989-8)

A. K. Nayak, D. Pal, D. R. Pany, B. Mohanty, J. Adv. Pharm. Technol. Res. 1 (2010) 338 (https://dx. doi. org/10. 4103%2F0110-5558. 72430)

F. Mannai, M. Ammar, J. G. Yanez, E. Elaloui, Y. Moussaoui, J. Polym. Environ. 26 (2018) 798 (https://doi. org/10. 1007/s10924-017-0968-7)

E. K. Bae, S. J. Lee, J. Microencapsul. 25 (2008) 549 (https://doi. org/10. 1080/02652040802075682)

H. C. F. Carneiro, R. V. Tonon, C. R. F. Grosso, M. D. Hubinger, J. Food Eng. 115 (2013) 443 (https://doi. org/10. 1016/j. jfoodeng. 2012. 03. 033)

N. Bayar, M. Kriaa, R. Kammoun, Int. J. Biol. Macromol. 92 (2016) 441 (https://doi. org/10. 1016/j. ijbiomac. 2016. 07. 042)

N. Bayar, T. Bouallegue, M. Achour, M. Kriaa, R. Kammoun, A. Bougatef, Food Chem. 235 (2017) 275 (https://doi. org/10. 1016/j. foodchem. 2017. 05. 029)

O. Ishurd, F. Zgheel, M. Elghazoun, M. Elmabruk, A. Kermagi, J. F. Kennedy, C. J. Knill, Carbohyd. Polym. 82 (2010) 848 (https://doi. org/10. 1016/j. carbpol. 2010. 06. 006)

H. Zeng, S. Miao, Y. Zhang, S. Lin, Y. Jian, Y. Tian, B. Zheng, Food Hydrocolloids 52 (2016) 126 (https://doi. org/10. 1016/j. foodhyd. 2015. 05. 028)

M. M. Zhao, N. Yang, B. Yang, Y. Jiang, G. Zhang, Food Chem. 105 (2007) 1480 (https://doi. org/10. 1016/j. foodchem. 2007. 05. 031)

J. L. Rivera-Corona, F. Rodríguez-Gonzalez, R. Rendon-Villalobos, E. García-Her-nan¬dez, J. Solorza-Feria, LWT - Food Sci. Technol. 59 (2014) 806 (https://doi. org/10. 1016/j. lwt. 2014. 06. 011)

M. C. Otálora, J. A. G. Castaño, A. Wilches-Torres, LWT - Food Sci. Technol. 112 (2019) 108234 (https://doi. org/10. 1016/j. lwt. 2019. 06. 001)

V. E. Manhivi, S. Venter, E. O. Amonsou, T. Kudanga, Carbohyd. Polym. 195 (2018) 163 (https://doi. org/10. 1016/j. carbpol. 2018. 04. 062)

R. Gheribi, L. Puchot, P. Verge, N. Jaoued-Grayaa, M. Mezni, Y. Habibi, K. Khwaldia, Carbohyd. Polym. 190 (2018) 204 (https://doi. org/10. 1016/j. carbpol. 2018. 02. 085)

Q. Guo, S. W. Cui, Q. Wang, X. Hu, Q. Guo, K. Ji, R. Yada, Carbohyd. Polym. 86 (2011) 831 (https://doi. org/10. 1016/j. carbpol. 2011. 05. 034)

Y. L. Han, J. Gao, Y. Y. Yin, Z. Y. Jin, X. M. Xu, H. Q. Chen, Carbohyd. Polym. 151 (2016) 381 (https://doi. org/10. 1016/j. carbpol. 2016. 05. 085)

F. Mannai, M. Ammar, J. G. Yanez, E. Elaloui, Y. Moussaoui, Cellulose 23 (2016) 2061 (https://doi. org/10. 1007/s10570-016-0899-9)

A. Du Toit, M. De Wit, A. Hugo, Molecules 23 (2018) 916 (https://doi. org/10. 3390/molecules23040916)

J. Y. Yin, S. P. Nie, J. Li, C. Li, S. W. Cui, M. Y. Xie, J. Agr. Food Chem. 60 (2012) 7981 (https://doi. org/10. 1021/jf302052t)

H. Guo, X. Zhao, J. Microencapsul. 25 (2008) 221m (https://doi. org/10. 1080/02652040701861828)

J. C. Roy, F. Salaün, S. Giraud, A. Ferri, J. Guan, Carbohyd. Polym. 173 (2017) 202 (https://doi. org/10. 1016/j. carbpol. 2017. 06. 001)

H. Zhang, X. Wang, Sol. Energy Mat. Sol. Cells 93 (2009) 1366 (https://doi. org/10. 1016/j. solmat. 2009. 02. 021).