Folic acid conjugation of magnetite nanoparticles using pulsed electrohydraulic discharges

Authors

  • Vladimer Mikelashvili Department Of Physics, Faculty of Informatics and Control Systems, Georgian Technical University, Kostava str 77, Tbilisi 0175 https://orcid.org/0000-0001-9860-2488
  • Shalva Kekutia Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University, Z. Anjafaridze str. 5, Tbilisi, 0186, Georgia
  • Jano Markhulia Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University, Z. Anjafaridze str. 5, Tbilisi, 0186, Georgia
  • Liana Saneblidze Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University, Z. Anjafaridze str. 5, Tbilisi, 0186, Georgia
  • Zaur Jabua Georgian Technical University, M.Kostava str. 77, Tbilisi 0160, Georgia
  • László Almásy Institute for Energy Security and Environmental Safety, Centre for Energy Research, Konkoly Thege str. 29-33, Budapest-1121, Hungary https://orcid.org/0000-0001-5750-5788
  • Manfred Kriechbaum Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/5, A-8010 Graz, Austria https://orcid.org/0000-0002-3852-4198

DOI:

https://doi.org/10.2298/JSC200414053M

Keywords:

iron oxide nanoparticles, sonochemical coprecipitation, pulsed arc discharge, surface functionalization

Abstract

The sonochemical coprecipitation reaction with moderate ultrasound irradiation in low vacuum environment was used to obtain aqueous colloidal suspensions of iron oxide nanoparticles (IONPs). Synthesized magnetite nanoparticles were conjugated directly by Folic Acid using electrohydraulic discharges as a processing technique before modification of the surface of the nanoparticles. Electrohydraulic discharges were applied in two operational modes with high and low power pulsed direct currents between the electrodes. The physical and chemical properties of the obtained samples were studied using X-Ray Powder Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Dynamic Light Scattering (DLS), and Small Angle X-Ray Scattering (SAXS). The investigation has proved an inverse cubic spinel structure of magnetite with Folic Acid attachment to the magnetite surface (mean crystallite diameter in the samples D = 27~29 ± 2 nm by XRD and SAXS). It was found that the processing with electrohydraulic discharges increases the colloidal stability of the Folic acid-magnetite nanoparticle dispersions.

Author Biographies

Vladimer Mikelashvili, Department Of Physics, Faculty of Informatics and Control Systems, Georgian Technical University, Kostava str 77, Tbilisi 0175

Component Techniques Elements and Nanomaterials
Division, Senior Researcher

Shalva Kekutia, Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University, Z. Anjafaridze str. 5, Tbilisi, 0186, Georgia

Department of computing elements and nanomaterials, Chief Scientific fellow of Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University, Head of a group

Jano Markhulia, Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University, Z. Anjafaridze str. 5, Tbilisi, 0186, Georgia

Component Techniques Elements and Nanomaterials
Division, Researcher

Liana Saneblidze, Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University, Z. Anjafaridze str. 5, Tbilisi, 0186, Georgia

Component Techniques Elements and Nanomaterials
Division, Researcher

Zaur Jabua, Georgian Technical University, M.Kostava str. 77, Tbilisi 0160, Georgia

Department of physics, full professor

László Almásy, Institute for Energy Security and Environmental Safety, Centre for Energy Research, Konkoly Thege str. 29-33, Budapest-1121, Hungary

Centre for Energy Research, Senior scientist

Manfred Kriechbaum, Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/5, A-8010 Graz, Austria

Institute of Inorganic Chemistry, Senior Scientist

References

L. A. Yutkin, Electro-hydraulic effect and its application in industry, Engineering, Leningrad, Russia, 1986, p. 252 (in Russian) (http://bourabai.ru/library/elektrogidravlicheski_effekt.pdf)

E. Leal-Quirós, Brazilian J. Phys. 34 (2004) 1587 (http://dx.doi.org/10.1590/S0103-97332004000800015)

G. Saito, T. Akiyama, J. Nanomater. 2015 (2015) 1 (http://dx.doi.org/10.1155/2015/123696)

H. Li, K. Wang, X. Tuo, L. Almásy, Q. Tian, G. Sun, M. J. Henderson, Q. Li, A. Wacha, J. Courtois, M. Yan, Mater. Chem. Phys. 204 (2018) 236 (http://dx.doi.org/10.1016/j.matchemphys.2017.10.047)

S. Horikoshi, N. Serpone, RSC Adv. 7 (2017) 47196 (http://dx.doi.org/10.1039/c7ra09600c)

Ruma, H. Hosano, T. Sakugawa, H. Akiyama, Catalysts 8 (2018) 213 (http://dx.doi.org/10.3390/catal8050213)

S. Wakisaka, K. Tsuda, K. Takahashi, K. Satoh, IEEE Trans. Plasma Sci. 47 (2019) 1083 (https://doi.org/10.1109/TPS.2018.2866282)

H. Shiraishi, G. R. Sunaryo, K. Ishigure, J. Phys. Chem. 98 (1994) 5164 (https://doi.org/10.1021/j100070a037)

M. I. Lerner, I. A. Gorbikov, O. V. Bakina, S. O. Kasantzev, Inorg. Mater. Appl. Res. 8 (2017) 473 (http://dx.doi.org/10.1134/S2075113317030169)

P. M. Price, W. E. Mahmoud, A. A. Al-Ghamdi, L. M. Bronstein, Front. Chem. 6 (2018) 619 (http://dx.doi.org/10.3389/fchem.2018.00619)

T. Vangijzegem, D. Stanicki, S. Laurent, Expert Opin. Drug Deliv. 16 (2019) 69 (http://dx.doi.org/10.1080/17425247.2019.1554647)

S. Palanisamy, Y. M. Wang, Dalton Trans. 48 (2019) 9391 (http://dx.doi.org/10.1039/c9dt00459a)

A. Stepanov, R. Mendes, M. Rümmeli, T. Gemming, I. Nizameev, A. Mustafina, Chem. Pap. 73 (2019) 2715 (http://dx.doi.org/10.1007/s11696-019-00823-9)

A. Ali, H. Zafar, M. Zia, I. ul Haq, A. R. Phull, J. S. Ali, A. Hussain, Nanotechnol. Sci. Appl. 9 (2016) 49 (http://dx.doi.org/10.2147/NSA.S99986)

H. Arami, Z. Stephen, O. Veiseh, M. Zhang, Adv. Polym. Sci. 243 (2011) 163 (http://dx.doi.org/10.1007/12_2011_121)

T. Keskin, S. Yalcin, U. Gunduz, Inorg. Nano-Metal Chem. 48 (2018) 150 (http://dx.doi.org/10.1080/24701556.2018.1453840)

M. Erdem, S. Yalcin, U. Gunduz, Hum. Exp. Toxicol. 36 (2017) 833 (http://dx.doi.org/10.1177/0960327116672910)

H. Yoo, S. K. Moon, T. Hwang, Y. S. Kim, J. H. Kim, S. W. Choi, J. H. Kim, Langmuir 29 (2013) 5962 (http://dx.doi.org/10.1021/la3051302)

A. Ancira-Cortez, E. Morales-Avila, B. E. Ocampo-Garciá, C. González-Romero, L. A. Medina, G. López-Téllez, E. Cuevas-Yáñez, J. Nanomater. 2017 (2017) 1 (http://dx.doi.org/10.1155/2017/5184167)

Q. L. Jiang, S. W. Zheng, R. Y. Hong, S. M. Deng, L. Guo, R. L. Hu, B. Gao, M. Huang, L. F. Cheng, G. H. Liu, Y. Q. Wang, Appl. Surf. Sci. 307 (2014) 224 (http://dx.doi.org/10.1016/j.apsusc.2014.04.018)

J. Chen, S. Klem, A. K. Jones, B. Orr, M. M. B. Holl, Bioconjug. Chem. 28 (2017) 81 (http://dx.doi.org/10.1021/acs.bioconjchem.6b00526)

J. Markhulia, V. Mikelashvili, S. Kekutia, L. Saneblidze, Z. Jabua, D. Daraselia, D. Jafaridze, J. Pharm. Appl. Chem. 2 (2016) 33 (http://dx.doi.org/10.18576/jpac/020201)

J. Markhulia, S. Kekutia, Z. Jabua, V. Mikelashvili, L. Saneblidze, Chemical co-precipitation synthesis and characterization of polyethylene glycol coated iron oxide nanoparticles for biomedical applications, 7th International Multidisciplinary Scientific GeoConference SGEM 2017, (2017), Sofia, Bulgaria, SGEM2017 Conference Proceedings 17, SGEM, Sofia, 2017, 51-58 (http://dx.doi.org/10.5593/sgem2017/61/S24.007)

J. Markhulia, S. Kekutia, N. Mitskevich, V. Mikelashvili, L. Saneblidze, N. Leladze, Z. Jabua, L. Sacarescu, M. Kriechbaum, L. Almásy, Dig. J. Nanomater. Biostructures 13 (2018) 1081 (http://www.chalcogen.ro/1081_MarkhuliaJ.pdf)

A. F. C. Campos, W. C. De Medeiros, R. Aquino, J. Depeyrot, Mater. Res. 20 (2017) 1729 (http://dx.doi.org/10.1590/1980-5373-MR-2017-0649)

E. Illés, E. Tombácz, J. Colloid Interface Sci. 295 (2006) 115 (https://doi.org/10.1016/j.jcis.2005.08.003)

F. Márquez, G. M. Herrera, T. Campo, M. Cotto, J. Ducongé, J. M. Sanz, E. Elizalde, Ó. Perales, C. Morant, Nanoscale Res. Lett. 7 (2012) 210 (http://dx.doi.org/10.1186/1556-276X-7-210)

M. Mahdavi, M. Bin Ahmad, M. J. Haron, F. Namvar, B. Nadi, M. Z. Ab Rahman, J. Amin, Molecules 18 (2013) 7533 (http://dx.doi.org/10.3390/molecules18077533)

D. Franke, M. V. Petoukhov, P. V. Konarev, A. Panjkovich, A. Tuukkanen, H. D. T. Mertens, A. G. Kikhney, N. R. Hajizadeh, J. M. Franklin, C. M. Jeffries, D. I. Svergun, J. Appl. Crystallogr. 50 (2017) 1212 (http://dx.doi.org/10.1107/S1600576717007786)

P. V. Konarev, V. V. Volkov, A. V. Sokolova, M. H. J. Koch, D. I. Svergun, J. Appl. Crystallogr. 36 (2003) 1277 (http://dx.doi.org/10.1107/S0021889803012779)

A. Guinier, G. Fournet. Small-Angle Scattering of X-rays, Wiley, New York, USA, 1955 (https://pdfs.semanticscholar.org/e307/79ad3cf2fb2e2c0a4d6c6b9f6a92bafec4a8.pdf)

A. V. Semenyuk, D. I. Svergun, J. Appl. Crystallogr. 24 (1991) 537 (http://dx.doi.org/10.1107/S002188989100081X)

D. I. Svergun, J. Appl. Crystallogr. 24 (1992) 495 (http://dx.doi.org/10.1107/S0021889892001663)

D. Franke, D. I. Svergun, J. Appl. Crystallogr. 42 (2009) 342 (http://dx.doi.org/10.1107/S0021889809000338)

S. Zhu, Y. Leng, M. Yan, X. Tuo, J. Yang, L. Almásy, Q. Tian, G. Sun, L. Zou, Q. Li, J. Courtois, H. Zhang, Appl. Surf. Sci. 447 (2018) 381 (http://dx.doi.org/10.1016/j.apsusc.2018.04.016)

D. F. Coral-Coral, J. A. Mera-Córdoba, DYNA 86 (2019) 135 (http://dx.doi.org/10.15446/dyna.v86n209.73450)

V. I. Petrenko, O. P. Artykulnyi, L. A. Bulavin, L. Almásy, V. M. Garamus, O. I. Ivankov, N. A. Grigoryeva, L. Vekas, P. Kopcansky, M. V. Avdeev, Colloids Surf., A 541 (2018) 222 (http://dx.doi.org/10.1016/j.colsurfa.2017.03.054)

A. Taufiq, Sunaryono, N. Hidayat, A. Hidayat, E. G. R. Putra, A. Okazawa, I. Watanabe, N. Kojima, S. Pratapa, Darminto, Nano 12 (2017) 1750110 (http://dx.doi.org/10.1142/S1793292017501107)

B. R. Pauw, J. S. Pedersen, S. Tardif, M. Takata, B. B. Iversen, J. Appl. Crystallogr. 46 (2013) 365 (http://dx.doi.org/10.1107/S0021889813001295)

B. R. Pauw, C. Kästner, A. F. Thünemann, J. Appl. Crystallogr. 50 (2017) 1280 (http://dx.doi.org/10.1107/S160057671701010X)

Published

2020-09-10

How to Cite

[1]
V. Mikelashvili, “Folic acid conjugation of magnetite nanoparticles using pulsed electrohydraulic discharges”, J. Serb. Chem. Soc., vol. 85, no. 5, p. -, Sep. 2020.

Issue

Section

Physical Chemistry