Folic acid conjugation of magnetite nanoparticles using pulsed electrohydraulic discharges
Main Article Content
Abstract
The sonochemical coprecipitation reaction with moderate ultrasound irradiation in a low vacuum environment was used to obtain aqueous colloidal suspensions of iron oxide nanoparticles (IONPs). The synthesized magnetite nanoparticles were conjugated directly by folic acid using electrohydraulic discharges as a processing technique before modification of the surface of the nanoparticles. Electrohydraulic discharges were applied in two operational modes with high and low power pulsed direct currents between the electrodes. The physical and chemical properties of the obtained samples were studied using X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) and small angle X-ray scattering (SAXS). The investigation proved an inverse cubic spinel structure of magnetite with folic acid attachment to the magnetite surface (mean crystallite diameter in the samples, D, ranges 25–31 nm by XRD and SAXS). It was found that the processing with electrohydraulic discharges increased the colloidal stability of the folic acid-magnetite nanoparticle dispersions.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
L. A. Yutkin, Electro-hydraulic effect and its application in industry, Engineering, Leningrad, 1986, p. 252 (http://bourabai.ru/library/elektrogidravlicheski_effekt.pdf)
E. Leal-Quirós, Braz. J. Phys. 34 (2004) 1587 (http://dx.doi.org/10.1590/S0103-97332004000800015)
G. Saito, T. Akiyama, J. Nanomater. 2015 (2015) 1 (http://dx.doi.org/10.1155/2015/123696)
H. Li, K. Wang, X. Tuo, L. Almásy, Q. Tian, G. Sun, M. J. Henderson, Q. Li, A. Wacha, J. Courtois, M. Yan, Mater. Chem. Phys. 204 (2018) 236 (http://dx.doi.org/10.1016/j.matchemphys.2017.10.047)
S. Horikoshi, N. Serpone, RSC Adv. 7 (2017) 47196 (http://dx.doi.org/10.1039/c7ra09600c)
Ruma, H. Hosano, T. Sakugawa, H. Akiyama, Catalysts 8 (2018) 213 (http://dx.doi.org/10.3390/catal8050213)
S. Wakisaka, K. Tsuda, K. Takahashi, K. Satoh, IEEE Trans. Plasma Sci. 47 (2019) 1083 (https://doi.org/10.1109/TPS.2018.2866282)
H. Shiraishi, G. R. Sunaryo, K. Ishigure, J. Phys. Chem. 98 (1994) 5164 (https://doi.org/10.1021/j100070a037)
M. I. Lerner, I. A. Gorbikov, O. V. Bakina, S. O. Kasantzev, Inorg. Mater. Appl. Res. 8 (2017) 473 (http://dx.doi.org/10.1134/S2075113317030169)
P. M. Price, W. E. Mahmoud, A. A. Al-Ghamdi, L. M. Bronstein, Front. Chem. 6 (2018) 619 (http://dx.doi.org/10.3389/fchem.2018.00619)
T. Vangijzegem, D. Stanicki, S. Laurent, Expert Opin. Drug Deliv. 16 (2019) 69 (http://dx.doi.org/10.1080/17425247.2019.1554647)
S. Palanisamy, Y. M. Wang, Dalton Trans. 48 (2019) 9391 (http://dx.doi.org/10.1039/c9dt00459a)
A. Stepanov, R. Mendes, M. Rümmeli, T. Gemming, I. Nizameev, A. Mustafina, Chem. Pap. 73 (2019) 2715 (http://dx.doi.org/10.1007/s11696-019-00823-9)
A. Ali, H. Zafar, M. Zia, I. ul Haq, A. R. Phull, J. S. Ali, A. Hussain, Nanotechnol. Sci. Appl. 9 (2016) 49 (http://dx.doi.org/10.2147/NSA.S99986)
H. Arami, Z. Stephen, O. Veiseh, M. Zhang, Adv. Polym. Sci. 243 (2011) 163 (http://dx.doi.org/10.1007/12_2011_121)
T. Keskin, S. Yalcin, U. Gunduz, Inorg. Nano-Metal Chem. 48 (2018) 150 (http://dx.doi.org/10.1080/24701556.2018.1453840)
M. Erdem, S. Yalcin, U. Gunduz, Hum. Exp. Toxicol. 36 (2017) 833 (http://dx.doi.org/10.1177/0960327116672910)
H. Yoo, S. K. Moon, T. Hwang, Y. S. Kim, J. H. Kim, S. W. Choi, J. H. Kim, Langmuir 29 (2013) 5962 (http://dx.doi.org/10.1021/la3051302)
A. Ancira-Cortez, E. Morales-Avila, B. E. Ocampo-Garciá, C. González-Romero, L. A. Medina, G. López-Téllez, E. Cuevas-Yáñez, J. Nanomater. 2017 (2017) 1 (http://dx.doi.org/10.1155/2017/5184167)
Q. L. Jiang, S. W. Zheng, R. Y. Hong, S. M. Deng, L. Guo, R. L. Hu, B. Gao, M. Huang, L. F. Cheng, G. H. Liu, Y. Q. Wang, Appl. Surf. Sci. 307 (2014) 224 (http://dx.doi.org/10.1016/j.apsusc.2014.04.018)
J. Chen, S. Klem, A. K. Jones, B. Orr, M. M. B. Holl, Bioconjug. Chem. 28 (2017) 81 (http://dx.doi.org/10.1021/acs.bioconjchem.6b00526)
J. Markhulia, V. Mikelashvili, S. Kekutia, L. Saneblidze, Z. Jabua, D. Daraselia, D. Jafaridze, J. Pharm. Appl. Chem. 2 (2016) 33 (http://dx.doi.org/10.18576/jpac/020201)
J. Markhulia, S. Kekutia, Z. Jabua, V. Mikelashvili, L. Saneblidze, in Proceedings of 7th International Multidisciplinary Scientific GeoConference SGEM 2017, (2017), Sofia, Bulgaria, SGEM2017 Conference Proceedings 17, SGEM, Sofia, 2017, pp. 51–58 (http://dx.doi.org/10.5593/sgem2017/61/S24.007)
J. Markhulia, S. Kekutia, N. Mitskevich, V. Mikelashvili, L. Saneblidze, N. Leladze, Z. Jabua, L. Sacarescu, M. Kriechbaum, L. Almásy, Dig. J. Nanomater. Biostructures 13 (2018) 1081 (http://www.chalcogen.ro/1081_MarkhuliaJ.pdf)
A. F. C. Campos, W. C. De Medeiros, R. Aquino, J. Depeyrot, Mater. Res. 20 (2017) 1729 (http://dx.doi.org/10.1590/1980-5373-MR-2017-0649)
E. Illés, E. Tombácz, J. Colloid Interface Sci. 295 (2006) 115 (https://doi.org/10.1016/j.jcis.2005.08.003)
F. Márquez, G. M. Herrera, T. Campo, M. Cotto, J. Ducongé, J. M. Sanz, E. Elizalde, Ó. Perales, C. Morant, Nanoscale Res. Lett. 7 (2012) 210 (http://dx.doi.org/10.1186/1556-276X-7-210)
M. Mahdavi, M. Bin Ahmad, M. J. Haron, F. Namvar, B. Nadi, M. Z. Ab Rahman, J. Amin, Molecules 18 (2013) 7533 (http://dx.doi.org/10.3390/molecules18077533)
D. Franke, M. V. Petoukhov, P. V. Konarev, A. Panjkovich, A. Tuukkanen, H. D. T. Mertens, A. G. Kikhney, N. R. Hajizadeh, J. M. Franklin, C. M. Jeffries, D. I. Svergun, J. Appl. Crystallogr. 50 (2017) 1212 (http://dx.doi.org/10.1107/S1600576717007786)
P. V. Konarev, V. V. Volkov, A. V. Sokolova, M. H. J. Koch, D. I. Svergun, J. Appl. Crystallogr. 36 (2003) 1277 (http://dx.doi.org/10.1107/S0021889803012779)
A. Guinier, G. Fournet. Small-Angle Scattering of X-rays, Wiley, New York, 1955 (https://pdfs.semanticscholar.org/e307/79ad3cf2fb2e2c0a4d6c6b9f6a92bafec4a8.pdf)
A. V. Semenyuk, D. I. Svergun, J. Appl. Crystallogr. 24 (1991) 537 (http://dx.doi.org/10.1107/S002188989100081X)
D. I. Svergun, J. Appl. Crystallogr. 24 (1992) 495 (http://dx.doi.org/10.1107/S0021889892001663)
D. Franke, D. I. Svergun, J. Appl. Crystallogr. 42 (2009) 342 (http://dx.doi.org/10.1107/S0021889809000338)
S. Zhu, Y. Leng, M. Yan, X. Tuo, J. Yang, L. Almásy, Q. Tian, G. Sun, L. Zou, Q. Li, J. Courtois, H. Zhang, Appl. Surf. Sci. 447 (2018) 381 (http://dx.doi.org/10.1016/j.apsusc.2018.04.016)
D. F. Coral-Coral, J. A. Mera-Córdoba, DYNA 86 (2019) 135 (http://dx.doi.org/10.15446/dyna.v86n209.73450)
V. I. Petrenko, O. P. Artykulnyi, L. A. Bulavin, L. Almásy, V. M. Garamus, O. I. Ivankov, N. A. Grigoryeva, L. Vekas, P. Kopcansky, M. V. Avdeev, Colloids Surfaces, A 541 (2018) 222 (http://dx.doi.org/10.1016/j.colsurfa.2017.03.054)
A. Taufiq, Sunaryono, N. Hidayat, A. Hidayat, E. G. R. Putra, A. Okazawa, I. Watanabe, N. Kojima, S. Pratapa, Darminto, Nano 12 (2017) 1750110 (http://dx.doi.org/10.1142/S1793292017501107)
B. R. Pauw, J. S. Pedersen, S. Tardif, M. Takata, B. B. Iversen, J. Appl. Crystallogr. 46 (2013) 365 (http://dx.doi.org/10.1107/S0021889813001295)
B. R. Pauw, C. Kästner, A. F. Thünemann, J. Appl. Crystallogr. 50 (2017) 1280 (http://dx.doi.org/10.1107/S160057671701010X)