Prediction of retardation factor of protein amino acids in reversed phase TLC and ethanol–sodium azide solution as mobile phase using QSRR

Susan Torabi, Fatemeh Honarasa, Saeed Yousefinejad

Abstract


Because of the importance of amino acids as the basic tiles of protein and their application in drug and food industries, there is a lot of interest in their separation and identification using simple and inexpensive approaches. Application of predictive models for determination of the behavior of AAs can reduce trial-and-error experiments. Here, the retardation factor (RF) of 21 protein AAs were studied using the quantitative structure-retardation factor (QSRR) model. The RF of the AAs in ethanol–sodium azide solution as the mobile phase of reversed phase thin layer chromatography (RP-TLC) was correlated with the AAs structural properties. The suggested QSRR indicated excellent fitting and prediction ability (R2train=0.95 and R2test=0.94). Furthermore, other statistical tests such as y-scrambling, cross validation and Williams plot confirmed the stability, absence of chance and the suitable applicability domain, respectively. It was shown that the sum of geometrical distances between oxygen and nitrogen atoms in AA molecule is an important factor in RF values of AAs in the ethanol–sodium azide.

Keywords


Natural amino acids; descriptors; structural property; thin layer chromatography; QSPR

Full Text:

PDF (901 kB)

References


S. H. Park, M. De Pra, P. R. Haddad, S. Grosse, C. A. Pohl, F. Steiner, J. Chromatogr. A 1609 (2020) 460508 (https://dx.doi.org/10.1016/j.chroma.2019.460508)

A. M. Ramezani, S. Yousefinejad, A. Shahsavar, A. Mohajeri, G. Absalan, J. Chromatogr. A (2019) (https://dx.doi.org/10.1016/j.chroma.2019.03.063)

J. M. Sutter, T. A. Peterson, P. C. Jurs, Anal. Chim. Acta 342 (1997) 113 (https://dx.doi.org/10.1016/S0003-2670(96)00578-8)

Y. Marrero-Ponce, S. J. Barigye, M. E. Jorge-Rodríguez, T. Tran-Thi-Thu, Chem. Pap. 72 (2018) 57 (https://dx.doi.org/10.1007/s11696-017-0257-x)

C. Giaginis, A. Tsantili-Kakoulidou, Chromatographia 76 (2013) 211 (https://dx.doi.org/10.1007/s10337-012-2374-6)

J. Dai, L. Jin, S. Yao, L. Wang, Chemosphere 42 (2001) 899 (https://dx.doi.org/10.1016/S0045-6535(00)00181-8)

K. Héberger, J. Chromatogr. A 1158 (2007) 273 (https://dx.doi.org/10.1016/J.CHRO¬MA.2007.03.108)

R. Kaliszan, Chem. Rev. 107 (2007) 3212 (https://dx.doi.org/10.1021/cr068412z)

R. Kaliszan, J. Chromatogr. A 220 (1981) 71 (https://dx.doi.org/10.1016/S0021-9673(00)98504-2)

D. Kaźmierczak, W. Ciesielski, R. Zakrzewski, JPC - J. Planar Chromatogr. - Mod. TLC 18 (2005) 427 (https://dx.doi.org/10.1556/JPC.18.2005.6.5)

T. Hudaib, S. Brown, D. Wilson, P. E. Eady, JPC - J. Planar Chromatogr. - Mod. TLC 29 (2016) 145 (https://dx.doi.org/10.1556/1006.2016.29.2.9)

S. Yousefinejad, F. Honarasa, N. Saeed, J. Sep. Sci. 38 (2015) 1771 (https://dx.doi.org/10.1002/jssc.201401427 )

S. Yousefinejad, F. Honarasa, S. Akbari, M. Nekoeinia, J. Liq. Chromatogr. Relat. Technol. (2020) 1 (https://dx.doi.org/10.1080/10826076.2020.1774388)

R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, Second, WILEY-VCH, Weinheim, 2009 (ISBN: 9783527318520)

P. Gramatica, Mol. Inform. 33 (2014) 311 (https://dx.doi.org/10.1002/minf.201400030)

S. Yousefinejad, B. Hemmateenejad, Chemom. Intell. Lab. Syst. 149 (2015) 177 (https://dx.doi.org/10.1016/j.chemolab.2015.06.016)

S. Yousefinejad, F. Honarasa, A. Solhjoo, J. Chem. Eng. Data 61 (2016) 614 (https://dx.doi.org/10.1021/acs.jced.5b00768)

J. U. N. Shao, J. Am. Stat. Assoc. 88 (1993) 486 (https://dx.doi.org/10.2307/2290328)

P. Gemperline, Practical Guide to Chemometrics, 2nd ed., Taylor & Francis Group, Boca Raton, 2006 (ISBN: 1574447831)

F. Honarasa, S. Yousefinejad, S. Nasr, M. Nekoeina, J. Mol. Liq. 212 (2015) 52 (https://dx.doi.org/10.1016/j.molliq.2015.08.055)

A. Golbraikh, A. Tropsha, Mol. Divers. 5 (2000) 231 (https://dx.doi.org/10.1023/A:1021372108686)

K. Roy, R. N. Das, P. Ambure, R. B. Aher, Chemom. Intell. Lab. Syst. 152 (2016) 18 (https://dx.doi.org/10.1016/j.chemolab.2016.01.008)

K. Roy, P. Chakraborty, I. Mitra, P. K. Ojha, S. Kar, R. N. Das, J. Comput. Chem. 34 (2013) 1071 (https://dx.doi.org/10.1002/jcc.23231)

L. Eriksson, J. Jaworska, A. P. Worth, M. T. D. Cronin, R. M. McDowell, P. Gramatica, Environ. Health Perspect. 111 (2003) 1361 (https://dx.doi.org/10.1289/ehp.5758)

T. A. Craney, J. G. Surles, Qual. Eng. 14 (2002) 391 (https://dx.doi.org/10.1081/QEN-120001878)

R. Todeschini, V. Consonni, P. Gramatica, M. Descriptors, H. Approach, G. C. Methods, C. S. Analysis, R. Approach, M. Descriptors, M. D. Selection, V. Reduction, V. S. Selection, C. Modeling, U. M. Algorithm, A. Domain, M. D. Interpretability, Chemometrics in QSAR, in S. D. Tauler, R., Walczak, B., & Brown (Ed.), Compr. Chemom. Chem. Biochem. Data Anal., Elsevier B.V., Amsterdam, 2009, pp. 129–172 (ISBN: 9780444641663)

T. I. Netzeva, A. P. Worth, T. Aldenberg, R. Benigni, M. T. D. Cronin, P. Gramatica, J. S. Jaworska, S. Kahn, G. Klopman, C. A. Marchant, G. Myatt, N. Nikolova-Jeliazkova, G. Y. Patlewicz, R. Perkins, D. W. Roberts, T. W. Schultz, D. T. Stanton, J. J. M. van de Sandt, W. Tong, G. Veith, C. Yang, Altern. to Lab. Anim. 33 (2005) 155 (https://dx.doi.org/10.1177/026119290503300209)

S. Yousefinejad, R. Eftekhari, F. Honarasa, Z. Zamanian, F. Sedaghati, J. Mol. Liq. 241 (2017) 861 (https://dx.doi.org/10.1016/j.molliq.2017.06.081).




DOI: https://doi.org/10.2298/JSC200611065T

Copyright (c) 2020 Journal of the Serbian Chemical Society

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 1.097
5 Year Impact Factor 1.023
(
138 of 177 journals)