Electrodeposition of aluminum-doped thin silicon films from a KF–KCl–KI–K2SiF6–AlF3 melt Scientific paper
Main Article Content
Abstract
The regularities of silicon and aluminum co-deposition on glassy carbon from KF–KCl (2:1)–75 mol % KI–0.15 mol % K2SiF6–(up to 0.15 mol %) AlF3 melts at 998 K were studied by cyclic voltammetry, chronoamperometry, scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The cyclic voltammograms demonstrated the presence of only one cathodic peak (or nucleation loop at a low reverse potential) and the corresponding anodic peak. The cathodic peak shifted in the cathodic direction with decreasing concentration of aluminum ions in the melt or with increasing scan rate. The Scharifker–Hills model was used to analyze potentiostatic current density transients and estimate the values of the apparent diffusion coefficient and the number density of nuclei. The morphology and elemental analysis of the samples obtained during potentiostatic and galvanostatic deposition for 30–60 s were studied. Continuous thin silicon films doped with aluminum were obtained under galvanostatic conditions.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
Y. Sakanaka, T. Goto, Electrochim. Acta 164 (2015) 139 (http://dx.doi.org/10.1016/j.electacta.2014.12.159)
S. C. Bhatia, Advanced Renewable Energy Systems, Woodhead Publishing India Pvt. Ltd., New Delhi, 2014 (ISBN-13: 978-9380308432, ISBN-10: 9380308434)
S. G. Dorofeev, N. N. Kononov, V. M. Zverolovlev, K. V. Zinoviev, V. N. Sukhanov, N. M. Sukhanov, B. G. Gribov, Semiconductors 48 (2014) 360 (https://doi.org/10.1134/S1063782614030105)
D. Ma, Z. Cao, A. Hu, Nano-Micro Lett. 6 (2014) 347 (https://doi.org/10.1007/s40820-014-0008-2)
M. Rohde, M. Zelt, O. Gabriel, S. Neubert, S. Kirner, D. Severin, T. Stolley, B. Rau, B. Stannowski, R. Schlatmann, Thin Solid Films 558 (2014) 337 (https://doi.org/10.1016/j.tsf.2014.03.008)
E. Yu. Gusev, J. Y. Jityaeva, O. A. Ageev, Mater. Phys. Mech. 37 (2018) 67 (http://dx.doi.org/10.18720/MPM.3712018_9)
D. Amkreutz, J. Haschke, T. Häring, F. Ruske, B. Rech, Sol. Energy Mater. Sol. Cells 123 (2014) 13 (http://dx.doi.org/10.1016/j.solmat.2013.12.021)
J. Haschke, D. Amkreutz, L. Korte, F. Ruske, B. Rech, Sol. Energy Mater. Sol. Cells 128 (2014) 190 (http://dx.doi.org/10.1016/j.solmat.2014.04.035)
R. Boen, J. Bouteillon, J. Appl. Electrochem. 13 (1983) 277 (https://doi.org/10.1007/BF00941599)
D. B. Frolenko, Z. S. Martemyanova, A. N. Baraboshkin, S. V. Plaksin, Rasplavy No.5 (1993) 42 (in Russian) (https://www.elibrary.ru/item.asp?id=12739574)
S. I. Zhuk, V. A. Isaev, O. V. Grishenkova, A. V. Isakov, A. P. Apisarov, Yu. P. Zaykov, J. Serb. Chem. Soc. 82 (2017) 51 (https://doi.org/10.2298/JSC160712109Z)
J. T. Moore, T. H. Wang, M. J. Heben, K. Douglas, T. F. Ciszek, in Conference Record of the 26th IEEE Photovoltaic Specialists Conference, 1997, Anaheim, CA, USA, IEEE, Anaheim, 1997, p. 775 (http://dx.doi.org/10.1109/PVSC.1997.654204)
O. Chemezov, A. Apisarov, A. Isakov, Yu. Zaikov, EPD Congress 2012, in Proceedings of the TMS 2012 Annual Meeting & Exhibition, 2012, Orlando, FL, USA, Proceedings TMS 2012, L. Zhang, J.A. Pomykala, A. Ciftja, Eds., Wiley, New York, 2012, p. 493 (https://doi.org/10.1002/9781118359341.ch58)
Yu. P. Zaykov, S. I. Zhuk, A. V. Isakov, O. V. Grishenkova, V. A. Isaev, J. Solid State Electrochem. 19 (2015) 1341 (https://doi.org/10.1007/s10008-014-2729-z)
K. Yasuda, K. Maeda, T. Nohira, R. Hagiwara, T. Homma, J. Electrochem. Soc. 163 (2016) D95 (https://doi.org/10.1149/2.0791603jes)
K. Maeda, K. Yasuda, T. Nohira, R. Hagiwara, T. Homma, J. Electrochem. Soc. 162 (2015) D444 (https://doi.org/10.1149/2.0441509jes)
S. I. Zhuk, A. V. Isakov, A. P. Apisarov, O. V. Grishenkova, V. A. Isaev, E. G. Vovkotrub, Yu. P. Zaykov, J. Electrochem. Soc. 164 (2017) H5135 (https://doi.org/10.1149/2.0171708jes)
J. Peng, H. Yin, J. Zhao, X. Yang, A. J. Bard, D. R. Sadoway, Adv. Funct. Mater. 28 (2017) 1703551 (https://doi.org/10.1002/adfm.201703551)
X. Zou, L. Ji, J. Ge, D. R. Sadoway, E. T. Yu, A. J. Bard, Nat. Commun. 10 (2019) 5772 (https://doi.org/10.1038/s41467-019-13065-w)
Yu. P. Zaykov, S. I. Zhuk, A. V. Isakov, O. V. Grishenkova, V. A. Isaev, Rasplavy No.5 (2016) 441 (in Russian) (https://www.elibrary.ru/item.asp?id=36286045)
A. P. Apisarov, A. A. Redkin, Yu. P. Zaikov, O. V. Chemezov, A. V. Isakov, J. Chem. Eng. Data 56 (2011) 4733 (https://doi.org/10.1021/je200717n)
A. Khudorozhkova, A. Isakov, A. Apisarov, A. Redkin, Y. Zaikov, J. Chem. Eng. Data 65 (2020) 2505 (https://doi.org/10.1021/acs.jced.9b01161)
M. V. Laptev, A. V. Isakov, O. V. Grishenkova, A. S. Vorobev, A. O. Khudorozhkova, L. A. Akashev, Yu. P. Zaikov, J. Electrochem. Soc. 167 (2020) 042506 (https://doi.org/10.1149/1945-7111/ab7aec)
M. Rüdiger, M. Rauer, C. Schmiga, M. Hermle, S. W. Glunz, Energy Procedia 8 (2011) 527 (https://doi.org/10.1016/j.egypro.2011.06.177)
C. Gong, S. Singh, J. Robbelein, N. Posthuma, E. Van Kerschaver, J. Poortmans, R. Mertens, Prog. Photovoltaics 19 (2010) 781 (https://doi.org/10.1002/pip.1035)
P. S. Pershin, A. V. Suzdaltsev, Y. P. Zaikov, J. Electrochem. Soc. 163 (2016) D167 (https://doi.org/10.1149/2.0521605jes)
A. Liu, Z. Shi, X. Hu, B. Gao, Z. Wang, J. Electrochem. Soc. 164 (2017) H126 (https://doi.org/10.1149/2.1381702jes)
A. O. Khudorozhkova, A. V. Isakov, A. A. Kataev, A. A. Redkin, Yu. P. Zaykov, Russ. Metallurgy (Metally) 2020 (2020) 918 (https://doi.org/10.1134/S0036029520080078)
Yu. P. Zaikov, A. A. Redkin, A. P. Apisarov, I. V. Korzun, N. P. Kulik, A. V. Isakov, A. A. Kataev, O. V. Chemezov, J. Chem. Eng. Data 58 (2013) 932 (https://doi.org/10.1021/je301195x)
S. Fletcher, C. S. Halliday, D. Gates, M. Westcott, T. Lwin, G. Nelson, J. Electroanal. Chem. 159 (1983) 267 (https://doi.org/10.1016/S0022-0728(83)80627-5)
D. Pletcher, R. Greff, R. Peat, L. M. Peter, J. Robinson, in Instrumental Methods in Electrochemistry, Woodhead, New Delhi, 2010, p. 210 (ISBN: 9781782420545).
V. A. Isaev, O. V. Grishenkova, A. V. Kosov, O. L. Semerikova, Y. P. Zaykov, J. Solid State Electrochem. 22 (2018) 2775 (https://doi.org/10.1007/s10008-018-3989-9)
B. R. Scharifker, G. J. Hills, Electrochim. Acta 28 (1983) 879 (https://doi.org/10.1016/0013-4686(83)85163-9)
V. A. Isaev, Yu. P. Zaykov, O. V. Grishenkova, A. V. Kosov, O. L. Semerikova, J. Electrochem. Soc. 166 (2019) D851 (https://doi.org/10.1149/2.1061915jes)
O. Díaz-Morales, J. Mostany, C. Borrás, B. R. Scharifker, J. Solid State Electrochem. 17 (2013) 345 (https://doi.org/10.1007/s10008-012-1881-6)
O. V. Grishenkova, A. V. Kosov, Yu. P. Zaikov, V. A. Isaev, Russ. Metallurgy (Metally) 2020 (2020) 914 (https://doi.org/10.1134/S0036029520080042)
I. G. Aksyanov, M. E. Kompan, I. V. Kul'kova, Phys. Solid State 52 (2010) 1850 (https://doi.org/10.1134/S1063783410090106)
N. A. Solopova, N. Dubrovinskaia, L. Dubrovinsky, Appl. Phys. Lett. 102 (2013) 121909 (http://dx.doi.org/10.1063/1.4798660)
Y.-J. Kim, M.-H. Kim, J.-H. Yang, J.-W. Park, J. Korean Phys. Soc. 49 (2006) 1196 (https://www.jkps.or.kr/journal/view.html?uid=7876&vmd=Full)
M. Becker, U. Gösele, A. Hofmann, S. Christiansen, J. Appl. Phys. 106 (2009) 074515 (https://doi.org/10.1063/1.3236571).