Voltammetric quantification of the anesthetic drug propofol (2,6-diisopropylphenol) in pharmaceutical formulations on a boron-doped diamond electrode Scientific paper
Main Article Content
Abstract
In this paper, the detailed electrochemistry of propofol (PRO), which is one of the intravenous agents commonly used for sedative-hypnotic purposes, was examined. In cyclic voltammetry, the agent showed one irreversible and diffusion‐controlled oxidation peak, resulting in the formation of a couple with a reduction and re-oxidation wave at less positive potentials. The effect of electrode pretreatment procedures on the electrochemical response of PRO was investigated using square wave voltammetry (SWV) and the optimum procedure was used to improve the signal response in subsequent studies. Quantification of PRO was realized based on the first oxidation peak using SWV. After optimization of all variables, the linear working range of PRO was found to be between 2.5 μg mL-1 (1.4×10-5 mol L-1) and 160.0 μg mL-1 (1.1×10-3 mol L-1, n = 15) with a detection limit 0.71 μg mL-1 (3.9×10-6 mol L-1). No noteworthy interference effect was detected. Furthermore, the developed method was used for quantification of PRO in pharmaceutical samples.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
K. Ode, Anaesth. Intensive Care Med. 20 (2019) 118 (http://dx.doi.org/10.1016/j.mpaic.2018.12.008)
X. S. Fan, F. X. Di, X. M. Feng, C. C. Li, C. Y. Bi, J. Li, J. Y. Yin, Y. C. Han, Chinese J. Anal. Chem. 48 (2020) e20056 (http://dx.doi.org/10.1016/S1872-2040(20)60011-1)
A. Maas, C. Maier, S. Iwersen-Bergmann, B. Madea, C. Hess, J. Pharm. Biomed. Anal. 146 (2017) 236 (http://dx.doi.org/10.1016/j.jpba.2017.08.035)
N. Ji Kwon, H. J. Kim, S. Cho, M. A. Lee, E. Han, Forensic Sci. Int. 306 (2020) 110070 (http://dx.doi.org/10.1016/j.forsciint.2019.110070)
I. Šrámková, C. G. Amorim, H. Sklenářová, M. C. B. M. Montenegro, B. Horstkotte, A. N. Araújo, P. Solich, Talanta 118 (2014) 104 (http://dx.doi.org/10.1016/j.talanta.2013.09.059)
M. H. Yeganeh, I. Ramzan, J. Chromatogr., B 691 (1997) 478 (http://dx.doi.org/10.1016/S0378-4347(96)00469-0)
H. Zhang, P. Wang, M. G. Bartlett, J. T. Stewart, J. Pharm. Biomed. Anal. 16 (1998) 1241 (http://dx.doi.org/10.1016/S0731-7085(97)00262-8)
C. A. J. Knibbe, V. S. Koster, V. H. M. Deneer, R. M. Stuurman, P. F. M. Kuks, R. Lange, J. Chromatogr., B 706 (1998) 305 (http://dx.doi.org/10.1016/S0378-4347(97)00571-9)
X. Cussonneau, E. De Smet, K. Lantsoght, J. P. Salvi, M. Bolon-Larger, R. Boulieu, J. Pharm. Biomed. Anal. 44 (2007) 680 (http://dx.doi.org/10.1016/j.jpba.2006.10.020)
F. Maurer, M. Geiger, T. Volk, D. I. Sessler, S. Kreuer, J. Pharm. Biomed. Anal. 143 (2017) 116 (http://dx.doi.org/10.1016/j.jpba.2017.05.042)
M. Y. M. Peeters, H. Kuiper, B. Greijdanus, J. van der Naalt, C. A. J. Knibbe, D. R. A. Uges, J. Chromatogr., B 852 (2007) 635 (http://dx.doi.org/10.1016/j.jchromb.2007.01.001)
L. Bajpai, M. Varshney, C. N. Seubert, D. M. Dennis, J. Chromatogr., B 810 (2004) 291 (http://dx.doi.org/10.1016/j.jchromb.2004.08.023)
F. Beaudry, S. A. Guénette, A. Winterborn, J. F. Marier, P. Vachon, J. Pharm. Biomed. Anal. 39 (2005) 411 (http://dx.doi.org/10.1016/j.jpba.2005.04.041)
S. Cohen, F. Lhuillier, Y. Mouloua, B. Vignal, P. Favetta, J. Guitton, J. Chromatogr., B 854 (2007) 165 (http://dx.doi.org/10.1016/j.jchromb.2007.04.021)
H. S. Kim, J. C. Cheong, J. Il Lee, M. K. In, J. Pharm. Biomed. Anal. 85 (2013) 33 (http://dx.doi.org/10.1016/j.jpba.2013.06.027)
L. K. Sørensen, J. B. Hasselstrøm, J. Pharm. Biomed. Anal. 109 (2015) 158 (http://dx.doi.org/10.1016/j.jpba.2015.02.035)
J. H. Kwak, H. K. Kim, S. Choe, S. In, J. S. Pyo, J. Chromatogr., B 1015–1016 (2016) 209 (http://dx.doi.org/10.1016/j.jchromb.2016.01.061)
A. Khedr, S. S. A. El-Hay, A. K. Kammoun, J. Pharm. Biomed. Anal. 134 (2017) 195 (http://dx.doi.org/10.1016/j.jpba.2016.11.051)
F. Maurer, T. Shopova, B. Wolf, D. Kiefer, T. Hüppe, T. Volk, D. I. Sessler, S. Kreuer, J. Pharm. Biomed. Anal. 150 (2018) 341 (http://dx.doi.org/10.1016/j.jpba.2017.12.043)
Y. Hui, K. Raedschelders, H. Zhang, D. M. Ansley, D. D. Y. Chen, J. Chromatogr., B 877 (2009) 703 (http://dx.doi.org/10.1016/j.jchromb.2009.01.030)
F. Stradolini, T. Kilic, A. Di Consiglio, M. Ozsoz, G. De Micheli, S. Carrara, Electroanalysis 30 (2018) 1363 (http://dx.doi.org/10.1002/elan.201700834)
F. Stradolini, T. Kilic, I. Taurino, G. De Micheli, S. Carrara, Sensors Actuators, B 269 (2018) 304 (http://dx.doi.org/10.1016/j.snb.2018.04.082)
J. Langmaier, F. Garay, F. Kivlehan, E. Chaum, E. Lindner, Anal. Chim. Acta 704 (2011) 63 (http://dx.doi.org/10.1016/j.aca.2011.08.003)
S. Thiagarajan, C. Y. Cheng, S. M. Chen, T. H. Tsai, J. Solid State Electrochem. 15 (2011) 781 (http://dx.doi.org/10.1007/s10008-010-1160-3)
F. Kivlehan, F. Garay, J. Guo, E. Chaum, E. Lindner, Anal. Chem. 84 (2012) 7670 (http://dx.doi.org/10.1021/ac3006878)
O. I. Lipskikh, E. I. Korotkova, Y. P. Khristunova, J. Barek, B. Kratochvil, Electrochim. Acta 260 (2018) 974 (http://dx.doi.org/10.1016/j.electacta.2017.12.027)
J. Xu, Y. Wang, S. Hu, Microchim. Acta (2016) (http://dx.doi.org/10.1007/s00604-016-2007-0)
M. Hanko, Ľ. Švorc, A. Planková, P. Mikuš, J. Electroanal. Chem. 840 (2019) 295 (http://dx.doi.org/10.1016/j.jelechem.2019.03.067)
Ľ. Švorc, K. Kalcher, Sensors Actuators, B 194 (2014) 332 (http://dx.doi.org/10.1016/j.snb.2013.12.104)
S. Allahverdiyeva, P. Talay Pınar, E. Keskin, O. Yunusoğlu, Y. Yardım, Z. Şentürk, Sensors Actuators, B 303 (2020) 127174 (http://dx.doi.org/10.1016/j.snb.2019.127174)
Ľ. Švorc, K. Borovská, K. Cinková, D. M. Stanković, A. Planková, Electrochim. Acta 251 (2017) 621 (http://dx.doi.org/10.1016/j.electacta.2017.08.077)
O. Sarakhman, L. Dubenska, Ľ. Švorc, J. Electroanal. Chem. 858 (2020) (http://dx.doi.org/10.1016/j.jelechem.2019.113759)
E. Keskin, S. Allahverdiyeva, E. Şeyho, Y. Yardim, J. Serbian Chem. Soc. 85 (2020) 923 (http://dx.doi.org/10.2298/JSC190906138K)
E. Keskin, Y. Yardim, A. Levent, Z. Şentürk, Rev. Roum. Chim. 64 (2019) 1063 (http://dx.doi.org/10.33224/rrch.2019.64.12.06)
D. F. Pereira, E. R. Santana, J. V. Piovesan, A. Spinelli, Diam. Relat. Mater. 105 (2020) 107793 (http://dx.doi.org/10.1016/j.diamond.2020.107793)
P. Samiec, Ľ. Švorc, D. M. Stanković, M. Vojs, M. Marton, Z. Navrátilová, Sensors Actuators, B 245 (2017) 963 (http://dx.doi.org/10.1016/j.snb.2017.02.023)
Ľ. Švorc, J. Sochr, M. Rievaj, P. Tomčík, D. Bustin, Bioelectrochemistry 88 (2012) 36 (http://dx.doi.org/10.1016/j.bioelechem.2012.04.004)
R. Trouillon, Y. Einaga, M. A. M. Gijs, Electrochem. Commun. 47 (2014) 92 (http://dx.doi.org/10.1016/j.elecom.2014.07.028)
P. T. Pinar, H. S. Ali, A. A. Abdullah, Y. Yardim, Z. Şentürk, Marmara Pharm. J. 22 (2018) 460.