Kinetic and isotherm studies for the biosorption of nickel ions by jute fabrics Scientific paper

Main Article Content

Aleksandra Ivanovska
https://orcid.org/0000-0001-6846-9583
Leposava Pavun
https://orcid.org/0000-0002-8268-0147
Biljana Dojčinović
https://orcid.org/0000-0003-1479-8060
Mirjana Kostić
https://orcid.org/0000-0001-9925-4884

Abstract

Raw jute fabric was chemically modified with 1 % NaOH for 30 min, 17.5 % NaOH for 5 min or with 0.7 % NaClO2 for 30 and 60 min to study the influence of changes in the chemical composition of the fabrics and quantity of carboxyl group on the biosorption capacity of the fabrics for nickel ions. The effects of contact time and initial concentration of nickel ions on the biosorp­tion capacity of the fabrics were also investigated. The obtained results rev­ealed that the biosorption of nickel ions can be explained by the pseudo-sec­ond-order kinetic model, while the experimental isotherm data fit better with the Langmuir model. The calculated ratios between maximal biosorption cap­ac­ity (6.30–12.06 mg g-1) of the jute fabrics and carboxyl group quantity indi­cated that approximately half of the carboxyl groups of the fabrics would be involved in binding nickel ions during biosorption. Therefore, the quantity of carboxyl group can be used to predict the maximal biosorption capacity of jute fabrics toward nickel ions. In the case of oxidized jute fabrics, the lignin rem­oval, and consequently increased content of cellulose and hemicelluloses, also contributed to a higher biosorption capacity.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
A. M. Ivanovska, L. Pavun, B. Dojčinović, and M. Kostić, “Kinetic and isotherm studies for the biosorption of nickel ions by jute fabrics: Scientific paper”, J. Serb. Chem. Soc., vol. 86, no. 9, pp. 885–897, Aug. 2021.
Section
Materials

References

Z. Kovacova, S. Demcak, M. Balintova, C. Pla, Materials 13 (2020) 3575 (https://doi.org/10.3390/ma13163575)

G. Crini, E. Lichtfouse, Environ. Chem. Lett. 17 (2019) 145 (https://doi.org/10.1007/s10311-018-0785-9)

A. Ivanovska, D. Cerovic, S. Maletic, I. Jankovic Castvan, K. Asanovic, M. Kostic, Cellulose 26 (2019) 5133 (https://doi.org/10.1007/s10570-019-02421-0)

A. Ivanovska, D. Cerovic, N. Tadic, I. Jankovic Castvan, K. Asanovic, M. Kostic, Ind. Crop. Prod. 140 (2019) 111632 (https://doi.org/10.1016/j.indcrop.2019.111632)

A. Ivanovska, M. Kostić, J. Serb. Chem. Soc. 85 (2020) 1621 (https://doi.org/10.2298/JSC201013069I)

W. Ganer, Textile Laboratory Manuel: Fibers, Heywood Books, London, 1967

M. Knežević, A. Kramar, T. Hajnrih, M. Korica, T. Nikolić, A. Žekić, M. Kostić, J. Nat. Fibers (2020), in press (https://doi.org/10.1080/15440478.2020.1745120)

S. Lagergren, Handl. 24 (1898) 1

Y. S. Ho, G. McKay, Process. Biochem. 34 (1999) 451 (https://doi.org/10.1016/S0032-9592(98)00112-5)

A Y.-S. Ho, W.-T. Chiu, C.-C. Wang, Bioresour. Technol. 96 (2005) 1285 (https://doi.org/10.1016/j.biortech.2004.10.021)

K.-Y. Shin, J.-Y. Hong, J. Jang, J. Hazard. Mater. 190 (2011) 36 (https://doi.org/10.1016/j.jhazmat.2010.12.102)

V. Rizzi, F. D'Agostino, P. Fini, P. Semeraro, P. Cosma, Dyes Pigments 140 (2017) 480 (https://doi.org/10.1016/j.dyepig.2017.01.069)

V. Rizzi, F. Romanazzi, J. Gubitosa, P. Fini, R. Romita, A. Agostiano, A. Petrella, P, Cosma, Biomolecules 9 (2019) 571 (https://doi.org/10.3390/biom9100571)

Y. S. Ho, G. Mckay, Water. Res. 34 (2000) 735 (https://doi.org/10.1016/S0043-1354(99)00232-8)

A. Vázquez-Guerrero, R. Cortés-Martínez, R. Alfaro-Cuevas-Villanueva, E. M. Rivera-

-Muñoz, R. Huirache-Acuña, Water 13 (2021) 89 (https://doi.org/10.3390/w13010089)

P. Semeraro, P. Fini, M. DAddabbo, V. Rizzi, P. Cosma, Int. J. Environ. Agric. Biotechnol. 2 (2017) 1835

R. Kumar, R. Kr. Sharma, React. Funct. Polym. 140 (2019) 82 (https://doi.org/10.1016/j.reactfunctpolym.2019.04.014)

S. Loiacono, G. Crini, G. Chanet, M. Raschetti, V. Placet, N. M. Crini, J. Chem. Technol. Biotechnol. 93 (2018) 2592 (https://doi.org/10.1002/jctb.5612)

G. Z. Kyzas, Z. Terzopoulou, V. Nikolaidis, E. Alexopoulou, D. N. Bikiaris, J. Mol. Liq. 209 (2015) 209 (https://doi.org/10.1016/j.molliq.2015.05.060)

C. M. Hasfalina, R. Z. Maryam, C. A. Luquan, M. Rashid, J. Nat. Fibers 7 (2010) 267 (https://doi.org/10.1080/15440478.2010.527508)

P. M. Shukla , S. R. Shukla, Sep. Sci. Technol. 48 (2013) 421 (https://doi.org/10.1080/01496395.2012.691933)

S. R. Shukla, R. S. Pai, A. D. Skendarkar, Sep. Purif. Technol. 47 (2006) 147 (https://doi.org/10.1016/j.seppur.2005.06.014)

H. Parab, S. Joshi, N. Shenoy, A. Lali, U. S. Sarma, M. Sudersanan, Process. Biochem. 41 (2006) 609 (https://doi.org/10.1016/j.procbio.2005.08.006)

K. Swarnalatha, S. Ayoob, Int. J. Sust. Technol. 9 (2016) 259 (https://doi.org/10.1080/19397038.2016.1152323)

Ch. Aravind, K. Chanakya, K. Mahindra, Int. J. Civil Eng. Technol. 8 (2017) 1869 (http://www.iaeme.com/MasterAdmin/uploadfolder/IJCIET_08_04_213/IJCIET_08_04_213.pdf)

D. Nityanandi, C. V. Subbhuraam, K. Kadirvelu, Environ. Technol. 27 (2006) 15 (https://doi.org/10.1080/09593332708618621)

D. Q. Melo, C. B. Vidal, A. L. da Silva, G. S. C. Raulino, A. D. de Luz, C. da Luz, P. B. A. Fechine, S. E. Mazzeto, R. F. do Nascimento, Int. J. Civil Environ. Eng. 15 (2015) 14 (http://ijens.org/Vol_15_I_06/155505-1506-2929-IJCEE-IJENS.pdf)

S. R. Shukla, R. S. Pai, Bioresource Technol. 96 (2005) 1430 (https://doi.org/10.1016/j.biortech.2004.12.010).

Similar Articles

You may also start an advanced similarity search for this article.