Binding of β-casein with fluvastatin and pitavastatin Scientific paper

Main Article Content

Hamid Dezhampanah
https://orcid.org/0000-0002-4378-2722
Omideh Rajabi Miandehi
https://orcid.org/0000-0003-2839-1704

Abstract

In this work, the binding interaction of fluvastatin (FLU) and pit-av­astatin (PIT) with bovine β-casein (β-CN) were performed under physiological conditions (pH 7.2) by fluorescence emission spectroscopy, synchronous fluor­escence spectroscopy, Fourier transform infrared spectroscopy (FTIR) and molecular docking methods. Due to the formation of FLU-β-CN and PIT-β-CN complexes, the intrinsic fluorescence of β-CN was quenched. The number of bound FLU and PIT per protein molecule (n) were about 1, also the binding constant of FLU-β-CN and PIT-β-CN complexes were 7.96×104 and 3.44×104 M-1 at 298 K, respectively. This result suggests that the binding affinity of FLU to β-CN was higher than that for PIT. Molecular modelling showed different binding sites for FLU and PIT on β-CN. All these experimental results suggest that β-CN can be used as a carrier protein which delivers FLU and PIT based drugs to target molecules.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
H. Dezhampanah and O. Rajabi Miandehi, “Binding of β-casein with fluvastatin and pitavastatin: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 11, pp. 1273–1284, Sep. 2022.
Section
Theoretical Chemistry

References

M. Gupta, R. Sharma, A. Kumar, Pharm. Exp. Med. 19 (2019) 259 (https://doi.org/10.1007/s13596-019-00393-x )

J. H. Shi, Q. Wang, D. Q. Pan, T. T. Liu, M. Jiang. J. Biomol. Struct. Dyn. 35 (2017) 1529 (https://doi.org/10.1080/07391102.2016.1188416)

A. L. Toppo, M. Yadav, S. Dhagat, S. Ayothiraman, J. S. Eswari, Ind. J. Biochem. Biophys. 58 (2021) 127

M. S. Khan, Ann. Romanian Soc. Cell Biol. 25 (2021) 6244

J. S. Yu, D. H. Shin, J. Kim, Pharmaceutics 12 (2020) 1133 (https://doi.org/10.3390/pharmaceutics12121133)

Ž. Reiner, M. Hatamipour, M. Banach, M. Pirro, K. Al-Rasadi, Arch. Med. Sci. 16 (2020) 490 (https://dx.doi.org/10.5114%2Faoms.2020.94655)

A. Sahebkar, N. Kiaie, A. M. Gorabi, M. R. Mannarino, V. Bainaconi, T. Jamialahmadi, M. Pirro, M. Banach, Prog. Lipid Res. 84 (2021) 101127 (https://doi.org/10.1016/j.plipres.2021.101127)

S. Rahimi Yazdi, M. Corredig, Food Chem. 132 (2012) 1143 (https://doi.org/10.1016/j.foodchem.2011.11.019)

K. L. Field, B. A. Kimball, J. A. Mennella, G. K. Beauchamp, A. A. Bachmanov, Physiol. Behav. 93 (2008) 189 (https://doi.org/10.1016/j.physbeh.2007.08.010)

Z. Allahdad, M. Varidi, R. Zadmard, A. Akbar, Food Chem. 255 (2018) 187 (https://doi.org/10.1016/j.foodchem.2018.01.143)

H. E. Indyk, B. D. Gill, J. E. Wood, S. Chetikam, T. Kobayashi, J. Food Compos. Anal. 101 (2021) 103946 (https://doi.org/10.1016/j.jfca.2021.103946)

M. Li, R. Kembaren, Y. Ni, J.M. Kleijn, Food Chem. 352 (2021) (https://doi.org/10.1016/j.foodchem.2021.129400)

N. Sarreshtehdari, F.S. Mohseni-Shahri, F. Moeinpour, Luminescence 36 (2021) 360 (https://doi.org/10.1002/bio.3951)

I. Portnaya, U. Cogan, Y. D. Livney, O. Ramon, K. Shimoni, M. Rosenberg, D. Danino, Food Chem. 54 (2006) 5555 (https://doi.org/10.1021/jf060119c)

J. Kaur, L. Katopo, A. Hung, J. Ashton, S. Kasapis, Food Chem. 252 (2018) 163 (https://doi.org/10.1016/j.foodchem.2018.01.091)

D. C. Thorn, S. Meehan, M. Sunde, A. Rekas, S. L. Gras, C. E. MacPhee, C. M. Dobson, M. R. Wilson, J. A. Carver, Biochemistry 44 (2005) 17027 (https://doi.org/10.1021/bi051352r)

L. Condict, J. Kaur, A. Hung, J. Ashton, S. Kasapis, Food Hydrocoll. 89 (2019) 351 (https://doi.org/10.1016/j.foodhyd.2018.10.055)

F. Mehranfar, A. K. Bordbar, H. Parastar, J. Photochem. Photobiol., B 127 (2013) 100 (https://doi.org/10.1016/j.jphotobiol.2013.07.019)

I. Hasni, P. Bourassa, S. Hamdani, G. Samson, R. Carpentier, H. A. Tajmir-Riahi, Food Chem. 126 (2011) 630 (https://doi.org/10.1016/j.foodchem.2010.11.087)

H. Dezhampanah, M. Esmaili, A. Khorshidi, J. Mol. Struct. 1136 (2017) 50 (https://doi.org/10.1016/j.molstruc.2017.01.065)

T. Liao, Y. Zhang, X. Huang, Z. Jiang, X. Tuo, Spectrochim. Acta, A 246 (2021) 119000 (https://doi.org/10.1016/j.saa.2020.119000)

F. Kong, J. Tian, M. Yang, Y. Zheng, X. Cao, X. Yue, Spectrochim. Acta A 243 (2020) (https://doi.org/10.1016/j.saa.2020.118824)

B. Li, R. Fu, H. Tan, Y. Zhang, W. Teng, Z. Li, J. Tian, Spectrochim. Acta, A 259 (2021) 119910 (https://doi.org/10.1016/j.saa.2021.119910)

Q. Wang, C. R. Huang, M. Jiang, Y. Y. Zhu, J. Wang, J. Chen, J. H. Shi, Spectrochim. Acta, A 156 (2016) 155 (https://doi.org/10.1016/j.saa.2015.12.003)

Z. Yin, X. Qie, M. Zeng, Z. Wang, F. Qin, J. Chen, W. Li, Z. He, Food Hydrocoll. 123 (2022) 107177 (https://doi.org/10.1016/j.foodhyd.2021.107177)

F. Azarakhsh, A. Divsalar, A. A. Saboury, A. Eidi, J. Mol. Liq. 333 (2021) 115999 (https://doi.org/10.1016/j.molliq.2021.115999)

G. Ma, C. Tang, X. Sun, J. Zhang, Food Hydrocoll. 113 (2021) 106485 (https://doi.org/10.1016/j.foodhyd.2020.106485)

28. A. Chakraborty, S. Basak, J. Photochem. Photobiol., B 87 (2007) 191 (https://doi.org/10.1016/j.jphotobiol.2007.04.004)

H. Dezhampanah, R. Firouzi, Z. Moradi Shoeili, R. Binazir, J. Mol. Struct. 1205 (2020) 127557 (https://doi.org/10.1016/j.molstruc.2019.127557)

K. Yang, C. Zhou, C. Liao, J. Sun, Y. Wang, R. Guan, J. Neng, P. Sun, LWT 144 (2021) 111225 (https://doi.org/10.1016/j.lwt.2021.111225)

M. Ariyaeifar, H. Amiri Rudbari, M. Sahihi, Z. Kazemi, A. A. Kajani, H. Zali-Boeini, N. Kordestani, G. Bruno, S. Gharaghani, J. Mol. Struct. 1161 (2018) 497 (https://doi.org/10.1016/j.molstruc.2018.02.042)

J. H. Shi, J. Wang, Y. Y. Zhu, J. Chen, J. Lumin. 145 (2014) 643 (https://doi.org/10.1016/j.jlumin.2013.08.042)

J. Hua Shi, D. Qi Pan, X. Xiou Wang, T. T. Liu, M. Jiang, Q. Wang, J. Photochem. Photobiol., B 162 (2016) 14–23 (https://doi.org/10.1016/j.jphotobiol.2016.06.025)

B. Hemmateenejad, M. Shamsipur, F. Samari, T. Khayamian, J. Pharm. Biomed. Anal. 67–68 (2012) 201 (https://doi.org/10.1016/j.jpba.2012.04.012)

H. Bi, L. Tang, X. Gao, J. Jia, H. Lv, J. Lumin. 178 (2016) 72 (https://doi.org/10.1016/j.jlumin.2016.05.048)

S. Gong, C. Yang, J. Zhang, Y. Yu, X. Gu, W. Li, Z. Wang, Food Hydrocoll. 111 (2021) 106223 (https://doi.org/10.1016/j.foodhyd.2020.106223)

P. Bourassa, L. Bekale, H. A. Tajmir-Riahi, J. Biol. Macromol. 70 (2014) 156 (https://doi.org/10.1016/j.ijbiomac.2014.06.038)

S. K. Pawar, S. Jaldappagari, J. Pharm. Anal. 9 (2019) 274 (https://doi.org/10.1016/j.jpha.2019.03.007).

Similar Articles

You may also start an advanced similarity search for this article.