Investigating inhibition characteristics of Butea monosperma leaf extracts to retard stainless steel biocorrosion in the presence of sulfate-reducing bacteria Scientific paper

Main Article Content

Shiv Kumar Manu
https://orcid.org/0009-0006-3053-0557
Noyel Victoria Selvam
https://orcid.org/0000-0001-5584-2609
Manivannan Ramachandran
https://orcid.org/0000-0001-5584-2609

Abstract

The influence of sulfate-reducing bacteria Desulfovibrio desulfur­icans on stainless steel SS 202 corrosion in neutral media was studied in detail using weight loss and electrochemical routes. The bacterial activity resulted in material loss with an average rate of 0.015 mm/year. The scanning electron microscopy (SEM) analysis showed a significant increase in the sessile bac­terial population with the immersion period. Use of 500 ppm palash (Butea monosperma) leaf extract (PLE) reduced the average corrosion rate to 0.002 mm/year. SEM analysis showed a very thin external film formation in the pre­sence of the inhibitor. The X-ray photoelectron spectroscopy studies confirmed the presence of corrosion products such as Fe2O3 and FeS. The gas chromato­graphy–mass spectrometry studies showed the dominant percentage of various terpenoids along with vitamin E as the main components of the PLE. Electro­chemical analysis showed the existence of a diffusion barrier. The resistance offered by the diffusion barrier is high in the inhibited sample when compared to uninhibited samples.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. K. Manu, N. V. Selvam, and M. Ramachandran, “Investigating inhibition characteristics of Butea monosperma leaf extracts to retard stainless steel biocorrosion in the presence of sulfate-reducing bacteria: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 7-8, pp. 749–764, Aug. 2023.
Section
Electrochemistry

References

A. Sharma, M. Ramachandran, N. V. Selvam, Corr. Rev. 40 (2021) 87 (https://doi.org/10.1515/corrrev-2021-0019)

B. S. Swaroop, S. N. Victoria, R. Manivannan, J. Taiwan Inst. Chem. Eng. 64 (2016) 269 (https://doi.org/10.1016/j.jtice.2016.04.007)

Y. Y. Yong, G. A. Dykes, W. S. Choo, Crit. Rev. Microbiol. 45 (2019) 201 (http://doi.org/10.1080/1040841X.2019.1573802)

M. M. Cowan, Clin. Microbiol. Rev. 12 (1999) 564 (https://doi.org/10.1128/CMR.12.4.564)

L. Lu, W. Hu, Z. Tian, D. Yuan, G. Yi, Y. Zhou, Chin. Med. 14 (2019) 11 (http://doi.org/10.1186/s13020-019-0232-2)

A. Singh, M. A. Quraishi, E. E. Ebenso, Int. J. Electrochem. Sci. 7 (2012) 12545 (http://www.electrochemsci.org/papers/vol7/71212545.pdf)

M. C. Sahu, R.N. Padhy, Asian Pac. J. Trop. Dis. 3 (2013) 217 (https://doi.org/10.1016/S2222-1808(13)60044-4)

J. Tao, S. Yan, H. Wang, L. Zhao, H. Zhu, Z. Wen, LWT 154 (2022) 112631, (https://doi.org/10.1016/j.lwt.2021.112631)

Y. Lekbach, Y. Dong, Z. Li, D. Xu, S. El Abed, Y. Yi, L. Li, S. I. Koraichi, T. Sun, F. Wang, Corros. Sci. 157 (2019) 98 (https://doi.org/10.1016/j.corsci.2019.05.021)

ASTMG31-12a, Standard Guide for Laboratory Immersion Corrosion Testing of Metals, 2012 (http://www.astm.org/Standards/G31)

S. M. Bhola, F. M. Alabbas, R. Bhola, J. R. Spear, B. Mishra, D. L. Olson, A. E. Kakpovbia, Eng. Fail. Anal. 36 (2014) 92 (https://doi.org/10.1016/j.engfailanal.2013.09.015)

S. K. Manu, S. N. Victoria, R. Manivannan, J. Indian Chem. Soc. 99 (2022) 100652 (https://doi.org/10.1016/j.jics.2022.100652)

S. Kebbouche-Gana, M.L. Gana, Ann. Microbiol. 62 (2012) 203 (https://doi.org/10.1007/s13213-011-0247-0)

A.G. Harrison, H.G. Thode, Trans. Faraday Soc. 54 (1958) 84 (https://doi.org/10.1039/TF9585400084)

S. Moosa, M. Nemati, S. T. L. Harrison, Chem. Eng. Sci. 57 (2002) 2773 (https://doi.org/10.1016/S0009-2509(02)00152-5)

S. Meng, Z. Liu, X. Zhao, B. Fan, H. Liu, M. Guo, H. Hao, RSC Adv. 11 (2021) 31693 (https://doi.org/10.1039/d1ra04976c)

C. N. Cao, J. Q. Zhang, An Introduction to Electrochemical Impedance Spectroscopy, Science Press, Beijing, 2002

H. Ma, X. Cheng, G. Li, S. Chen, Z. Quan, S. Zhao, L. Niu, Corros. Sci. 42 (2000) 1669 (https://doi.org/10.1016/S0010-938X(00)00003-2)

R. S. Abdel Hameed, Int. J. Electrochem. Sci. 17 (2022) 221017 (https://doi.org/10.20964/2022.10.31)

Y. Guo, T. Meng, D. Wang, H. Tan, R. He, Eng. Fail. Anal. 78 (2017) 87 (https://doi.org/10.1016/j.engfailanal.2017.03.003)

H. Liu, G. Meng, W. Li, T. Gu, H. Liu, Front. Microbiol. 10 (2019) 1298 (https://doi.org/10.3389/fmicb.2019.01298)

G. Vignesh, C. S. Narayanan, P. Chinnaiyan, K. Shanmugapriya, Mater. Res. Express 6 (2019) 126540 (https://doi.org/10.1088/2053-1591/ab5606)

A. Kumar, P.C. Srivastava, Mater. Sci.-Pol. 37 (2019) 116 (https://doi.org/10.2478/msp-2019-0001)

C. Mayer, R. Moritz, C. Kirschner, W. Borchard, R. Maibaum, J. Wingender, H. C. Flemming, Int. J. Biol. Macromol. 26 (1999) 3 (https://doi.org/10.1016/S0141-8130(99)00057-4)

A. Z. M. Rus, in Biopolymers and biotech admixtures for eco-efficient construction materials, F. Pacheco-Torgal, V. Ivanov, N. Karak, H. Jonkers, Еds., Woodhead Publishing, Sawston, 2016, p. 427 (https://doi.org/10.1016/C2014-0-02075-8)

S. Vijayakumar, B.Vaseeharan, B. Malaikozhundan, N. Gopi, P. Ekambaram, R. Pachaiappan, P. Velusamy, K. Murugan, G. Benelli, R. S. Kumar, M. Suriyanarayanamoorthy, Microbial Pathogenesis 102 (2017) 173 (https://doi.org/10.1016/j.micpath.2016.11.029)

M. M. Haque, M. K. Mosharaf, M. A. Haque, M. Z. H. Tanvir, M. K. Alam, Front. Microbiol. 12 (2021) 615113 (https://doi.org/10.3389/fmicb.2021.615113)

H. Qi, Y. Wang, J. Feng, R. Peng, Q. Shi, X. Xie, Int. J. Environ. Res. Public Health 19 (2022) 15416 (https://doi.org/10.3390/ijerph192215416)

P. Li, M. Yu, X. Ke, X. Gong, Z. Li, X. Xing, ACS Appl. Bio Mater. 5 (2022) 3290 (https://doi.org/10.1021/acsabm.2c00292)

H.-W. Tien, Y.-L. Huang, S.-Y. Yang, J.-Y. Wang, C.-C. M. Ma, Carbon 49 (2011) 1550 (https://doi.org/10.1016/j.carbon.2010.12.022)

N. Sarmadi, M. Gharabaghi, M. T. Saray, M. Darestani, D. Garman, P. Koshy, S. S. Mofarah, C. C. Sorrell, Inorg. Chem. 60 (2021) 175 (https://dx.doi.org/10.1021/acs.inorgchem.0c02762)

Y. Yuan, L. Wang, L. Gao, Front. Chem. 8 (2020) 818 (https://doi.org/10.3389/fchem.2020.00818)

M. Watanabe, H. Ando, T. Handa, T. Ichino, N. Kuwaki, Zairyo-to-Kankyo 56 (2007 10 (https://doi.org/10.3323/jcorr.56.10)

NIST X-ray Photoelectron Spectroscopy Database, 2012 (http://dx.doi.org/10.18434/T4T88K)

E. E. Knaus, B. K. Warren, T. A. Ondrus (University of Alberta, Bayer Corp) US Patent Publication 4,468,403 (1984)

Y. Wu, Y. Lin, J. Xu, Photochem. Photobiol. Sci. 18 (2019) 1081 (https://doi.org/10.1039/C8PP00493E)

D. Kim, Y. Kwon, J.-H. Lee, S.-J. Kim, Y.-I. Park, Membranes 12 (2022) 93 (https://doi.org/10.3390/membranes12010093)

R. J. J. Jansen, H. van Bekkum, Carbon 33 (1995) 1021 (https://doi.org/10.1016/0008-6223(95)00030-H)

X. Yan, T. Xu, G. Chen, S. Yang, H. Liu, Q. Xue, J. Phys., D 37 (2004) 907 (https://doi.org/10.1088/0022-3727/37/6/015)

Y. R. Park, M. J. Ko, Y.-H. Song, C. J. Lee, J. Appl. Phys. 114 (2013) 153516 (https://doi.org/10.1063/1.4826206)

G. Dong, M. Fang, J. Zhang, R. Wei, L. Shu, X. Liang, S. Yip, F. Wang, L. Guan, Z. Zheng, J. C. Ho, J. Mater. Chem., A 5 (2017) 11009 (https://doi.org/10.1039/C7TA01134B)

Z. Otgonbayar, W. C. Oh, J. Inorg. Organomet. Polym. 32 (2022) 2910 (https://doi.org/10.1007/s10904-022-02319-8)

V. C. Nettikaden, D. Ifezue, F. H. Tobins, J. Fail. Anal. Preven. 14 (2014) 43 (https://doi.org/10.1007/s11668-013-9757-3)

F. Guan, X. Zhai, J. Duan, M. Zhang, B. Hou, PLoS One 11 (2016) e0162315. (https://dx.doi.org/10.1371/journal.pone.0162315)

Z. Ahmad, Principles of Corrosion Engineering and Corrosion Control, Butterworth-Heinemann, Oxford, 2006 (https://doi.org/10.1016/B978-0-7506-5924-6.X5000-4)

S. L. Johnston, G. Voordouw, Environ. Sci. Technol. 46 (2012) 9183 (https://doi.org//10.1021/es3019594)

R. Cord-Ruwisch, W. Kleinitz, F. Widdel, J. Pet. Technol. 39 (1987) 97 (https://doi.org/10.2118/13554-PA).