The influence of conversion creatine and guanidinoacetic acid from zwitterionic to cationic form on their solubility in water – A thermodynamic study Scientific paper

Main Article Content

Milan Vraneš
https://orcid.org/0000-0001-8259-7549
Jovana Panić
https://orcid.org/0000-0003-0649-3400

Abstract

In this work, the solubility of creatine, creatinine, guanidinoacetic acid and their hydrochlorides in water at atmospheric pressure and in the temp­erature range T 293.15–313.15 K was determined by the gravimetric method. The thermodynamic parameters of dissolution in water for the ment­ioned com­pounds were calculated. The solubility increases significantly by converting the zwitterionic structures of creatine and guanidinoacetic acid into a cationic form, i.e., hydrochloride salt. The effect of increasing solubility is more pro­nounced for guanidinoacetic acid and decreases with temperature for both com­pounds. A simple process of transforming the electrically neutral zwitterionic structures into cations represents a good way to increase the solubility in water and bioavailability of biologically active compounds.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. Vraneš and J. Panić, “The influence of conversion creatine and guanidinoacetic acid from zwitterionic to cationic form on their solubility in water – A thermodynamic study: Scientific paper”, J. Serb. Chem. Soc., vol. 89, no. 7-8, pp. 1067–1076, Aug. 2024.
Section
Thermodynamics

References

R. Cooper, F. Naclerio, J. Allgrove, A. Jimenez, J. Int. Soc. Sports Nutr. 9 (2012) 33 (https://doi.org/10.1186/1550-2783-9-33)

R. Jäger, M. Purpura, A. Shao, T. Inoue, R. B. Kreider, Amino Acids 40 (2011) 1369 (https://doi.org/10.1007/s00726-011-0874-6)

S. Ostojić, B. Niess, M. Stojanović, M. Obrenović, Int. J. Medical Sci. 10 (2013) 141 (https://doi.org/10.7150/ijms.5125)

S. Ostojić, M. Stojanović, P. Drid, J. R. Hoffman, D. Sekulić, N. Zenić, Nutrients 8 (2016) 72 (https://doi.org/10.3390/nu8020072)

S. C. Forbes, D. M. Cordingley, S. M. Cornish, B. Gualano, H. Roschel, S. M. Ostojić, E. S. Rawson, B.D. Roy, K. Prokopidis, P. Giannos, D.G. Candow, Nutrients 14 (2022) 921 (https://doi.org/10.3390/nu14050921)

M. Vraneš, S. Ostojić, A. Tot, S. Papović, S. Gadžurić, Food Chem. 237 (2017) 53 (https://doi.org/10.1016/j.foodchem.2017.05.088)

C. M. Romero, C. D. Oviedo, J. Solution Chem. 6 (2013) 1355 (https://doi.org/10.1007/s10953-013-0031-9)

M. Jaffe, Biol. Chem. 10 (1886) 391 (https://doi.org/10.1515/bchm1.1886.10.5.391)

M. Vraneš, S. Papović, in Human health and nutrition: New forms of creatine in human nutrition, S. Ostojić, Ed., Nova Science Publishers, Nova Biomedical, New York, 2015, p. 105 (https://open.uns.ac.rs/handle/123456789/5425)

J. Sha, T. Ma, R. Zhao, P. Zhang, R. Sun, G. Jiang. Y. Wan, H. He, X. Yao, Y. Li, T. Li, B. Ren, J. Chem. Thermodyn. 144 (2020) 106073 (https://doi.org/10.1016/j.jct.2020.106073)

F. Shakeel, M. Imran, N. Haq, S. Alshehri, M. K. Anwer, Molecules 24 (2019) 3404 (https://doi.org/10.3390/molecules24183404)

M. Vraneš, S. Ostojić, Č. Podlipnik, A. Tot, J. Chem. Res. 45 (2021) 467 (https://doi.org/10.1177/1747519820978583).

Most read articles by the same author(s)