Towards edible ionic liquids – Cholinium taurate
Main Article Content
Abstract
In this work, the possibilities and benefits of using an ionic liquid as a potential dietary supplement are presented and discussed for the first time. Ionic liquids prevent the development of microorganisms due to high ion concentration and thus, prevent perishability of the food products. Thermal stability, structure, as well as the experimental density and viscosity in the temperature range from 20 to 50 °C and at the atmospheric pressure 1´105 Pa of newly synthesized cholinium taurate ionic liquid, [Chol][Tau], are determined. According to the performed physicochemical characterization, it can be concluded that the synthesized ionic liquid is suitable for application in the food industry. The temperature variation of viscosity and density is discussed in terms of processes, packaging, and storage of [Chol][Tau]. Also, the antiproliferative activity of [Chol][Tau] is determined and compared with those obtained for ascorbic acid and AspirinÒ as the standards.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
A. Maia, Mini Rev. Org. Chem. 8 (2011) 178 (https://doi.org/10.2174/157019311795177826)
M. Petković, K. R. Seddon, L. P. N. Rebelo, C. S. Pereira, Chem. Soc. Rev. 40 (2011) 1383 (https://doi.org/10.1039/c004968a)
T. P. Pham, C. W. Cho, Y. S. Yun, Water Res. 44(2) (2010) 352 (https://doi.org/10.1016/j.watres.2009.09.030)
P. J. Scammells, J. L. Scott, R. D. Singer, Aus. J. Chem. 58 (2005) 155 (https://doi.org/10.1071/CH04272)
A. G. Santos, B. D. Ribeiro, D. S. Alviano, M. A. Z. Coelho, RSC Adv. 4(70) (2014) 37157 (https://doi.org/10.1039/c4ra05295a)
J. L. Shamshina, S. P. Kelley, G. Gurau, R. D. Rogers, Nature 528 (2015) 188 (https://doi.org/10.1038/528188a)
7. I. Szilagyi, T. Szabo, A. Desert, G. Trefalt, T. Oncsik, M. Borkovec, Phys. Chem. Chem. Phys. 16 (2014) 9515 (https://doi.org/10.1039/C4CP00804A)
8. P. Rouster, M. Pavlovic, T. Cao, B. Katana, I. Szilagyi, J. Phys. Chem., C, in press (https://doi.org/10.1021/acs.jpcc.9b03983)
T. Oncsik, A. Desert, G. Trefalt, M. Borkovec, I. Szilagyi, Phys. Chem. Chem. Phys. 18 (2016) 7511 (https://doi.org/10.1039/C5CP07238G)
J. Arning, S. Stolte, A. Böschen, F. Stock, W. R. Pitner, U. Welz-Biermann, B. Jastorff, J. Ranke, Green Chem. 10 (2008) 47 (https://doi.org/10.1039/B712109A)
X-D. Hou, Q-P. Liu, T. J. Smith, N. Li, M-H. Zong, PLoS ONE 8 (2013) 59145 (https://doi.org/10.1371/journal.pone.0059145)
R. Boethling, E. Sommer, D. DiFiore, Chem. Rev. 107 (2007) 2207 (https://doi.org/10.1021/cr050952t)
Q-P. Liu, X-D. Hou, N. Li, M-H. Min-Hua Zong, Green Chem. 14 (2014) 304 (https://doi.org/10.1039/C2GC16128A)
S. De Santis, G. Masci, F. Casciotta, R. Caminiti, E. Scarpellini, M. Campetella, L. Gontrani, Phys. Chem. Chem. Phys. 17 (2015) 20687 (https://doi.org/10.1039/C5CP01612F)
M. Petković, J. L. Ferguson, H. Q. N. Gunaratne, R. Ferreira, M. C. Leitão, K. R. Seddon, L. Paulo, N. Rebelo, C. S. Pereira, Green Chem. 12 (2010) 643 (https://doi.org/10.1039/B922247B)
S. H. Zeisel, K. A. da Costa, P. D. Franklin, E. A. Alexander, J. T. Lamont, N. F. Sheard, A. Beiser, FASEB 5 (1991) 2093 (https://doi.org/10.1016/S0899-9007 %2800 %2900349-X)
P. M. Ueland, J. Inherit, Metab. Dis. 34 (2011) 3 (https://doi.org/10.1007/s10545-010-9088-4)
M. R. Olthof, P. Verhoef, Curr. Drug Metab. 6 (2005) 15 (https://doi.org10.2174/1389200052997366)
A. L. Buchman, M. D. Dubin, A. A. Moukarzel, D. J. Jenden, M. Roch, K. M. Rice, J. Gornbein, M. E. Ament, Hepatology 22 (1995) 1399 (https://doi.org/10.1002/hep.1840220510)
A. L. Buchman, D. Jenden, M. D. Roch, J. Am. Coll. Nutr. 18 (1999) 598 (https://doi.org/10.1080/07315724.1999.10718894)
J. T. Penry, M. M. Manore, Int. J. Sport Nutr. Exerc. Metab. 18 (2008) 191 (https://doi.org/10.1123/ijsnem.18.2.191)
M. D. Stojanović, M. V. Stojanović, K. Kanostrevac, D. Veljović, B. Medjedović, S. M. Ostojić, Adv. Phys. Educ. 1 (2011) 1 (https://doi.org/10.4236/ape.2011.11001)
J. R. Hoffman, N. A. Ratamess, A. Gonzalez, N. A. Beller, M. W. Hoffman, M. Olson, M. Purpura, R. Jäger, J. Int. Soc. Sports Nutr. 7 (2010) 39 (https://doi.org/10.1186/1550-2783-7-39)
A.Fonseca, J. W. Fell, C. P. Kurtzman, I. Spencer-Martins, Int. J. Syst. Evol. Microb. 50(1) (2000) 389 (https://dx.doi.org/10.1099/00207713-50-1-389)
M. Aedma, S. Timpmann, V. Ööpik, Eur. J. Appl. Physiol. 115 (2015) 387 (https://doi.org/10.1007/s00421-014-3025-4)
C. Russell, E. Papadopoulos, Y. Mezil, G. D. Wells, M. J. Plyley, M. Greenway, P. Klen¬trou, J. Int. Soc. Sports Nutr. 11 (2014) 26 (https://doi.org/10.1186/1550-2783-11-26)
T. G. Balshaw, T. M. Bampouras, T. J. Barry, S. A. Sparks, Amino Acids 44 (2013) 555 (https://doi.org/10.1007/s00726-012-1372-1)
L. A. da Silva, C. B. Tromm, K. F. Bom, I. Mariano, B. Pozzi, G. L. da Rosa, T. Tuon, G. da Luz, F. Vuolo, F. Petronilho, W. Cassiano, C. T. De Souza, R. A. Pinho, Appl. Physiol. Nutr. Metab. 39 (2013) 38 (https://doi.org/10.1139/apnm-2012-0229)
S. G. Ra, T. Miyazaki, K. Ishikura, H. Nagayama, S. Komine, Y. Nakata, S. Maeda, Y. Matsuzaki, H. Ohmori, J. Int. Soc. Sports Nutr. 10 (2013) 51 (https://doi.org/10.1186/1550-2783-10-51)
F. T. Rosa, E. C. Freitas, R. Deminice, A. A. Jordão, J. S. Marchini, Eur. J. Nutr. 53 (2014) 823 (https://doi.org/10.1007/s00394-013-0586-7)
A. De Luca, S. Pierno, D. C. Camerino, J. Transl. Med. 13 (2015) 243 (https://doi.org/10.1186/s12967-015-0610-1)
B. Campbell, C. Wilborn, P. La Bounty, L. Taylor, M. T. Nelson, M. Greenwood, T. N. Ziegenfuss, H. L. Lopez, J. R. Hoffman, J. R. Stout, S. Schmitz, R. Collins, D. S. Kalman, J. Antonio, R. B. Kreider, J. Int. Soc. Sports Nutr. 10 (2013) 1 (https://doi.org/10.1186/1550-2783-10-1)
D. D. Četojević-Simin, A. S. Velićanski, D. D. Cvetković, S. L. Markov, J. Ž. Mrđanović, V. V. Bogdanović, S. V. Šolajić, Food Bioproc. Tech. 5 (2012) 1756 (https://doi.org/10.1007/s11947-010-0458-6)
P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bokesch, S. Kenney, M. R. Boyd, J. Natl. Cancer Inst. 82 (1990) 1107 (https://doi.org/10.1093/jnci/82.13.1107)
M. X. Huang, C. R. Zhou, X. W. Han, J. Therm. Anal. Calorim. 113 (2013) 589 (https://doi.org/10.1007/s10973-012-2785-5)
D. J. Tao, Z. Cheng, F. F. Chen, Z. M. Li, N. Hu, X. S. Chen, J. Chem. Eng. Data 58 (2013) 1542 (https://doi.org/10.1021/je303d 110)
M. Vraneš, A. Tot, in Encyclopedia of Ionic Liquids, S. Zhang, Ed., Springer, Singapore, 2019 (https://doi.org/10.1007/978-981-10-6739-6_17-1)
Y. Okaya, Acta Crystallogr. 21 (1966) 726 (https://doi.org/10.1107/S0365110X66003785)
S. A. Arrhenius, Z. Phys. Chem. 4 (1889) 96 (https://doi.org/10.1515/zpch-1889-0108