Towards edible ionic liquids – cholinium taurate

Milan Vraneš, Aleksandar Tot, Jovana Panić, Snežana Papović, Slobodan Gadžurić, Dragana Četojević-Simin

Abstract


In this work, for the first time, the possibilities and benefits of using an ionic liquid as a potential dietary supplement are presented and discussed. Ionic liquids prevent the development of microorganisms due to high ion concentration and thus, prevent perishability of the food products. Thermal stability, structure, as well as the experimental density and viscosity in the temperature range from (20 to 50) ºC and at the atmospheric pressure (1·105 Pa) of newly synthesized cholinium taurate ionic liquid, [Chol][Tau], are determined. According to performed physicochemical characterization, it can be concluded that synthesized ionic liquid is suitable for application in the food industry. Temperature variation of viscosity and density is discussed in terms of processes, packaging, and storage of [Chol][Tau]. Also, the antiproliferative activity of [Chol][Tau] is determined and compared with those obtained for ascorbic acid and AspirinÒ as the standards.


Keywords


Iionic liquids; food additive; synergistic effect; choline; taurine; antiproliferative activity

Full Text:

PDF (1,425 kB)

References


A. Maia, Mini Rev. Org. Chem. 8 (2011) 178 (https://doi.org/10.2174/157019311795177826)

M. Petković, K. R. Seddon, L. P. N. Rebelo, C. S. Pereira, Chem. Soc. Rev. 40 (2011) 1383 (https://doi.org/10.1039/c004968a)

T. P. Pham, C. W. Cho, Y. S. Yun, Water Res. 44(2) (2010) 352 (https://doi.org/10.1016/j.watres.2009.09.030)

P. J. Scammells, J. L. Scott, R. D. Singer, Aust. J. Chem. 58 (2005) 155 (https://doi.org/10.1071/CH04272)

A. G. Santos, B. D. Ribeiro, D. S. Alviano, M. A. Z. Coelho, RSC Adv. 4(70) (2014) 37157 (https://doi.org/10.1039/c4ra05295a)

J. L. Shamshina, S. P. Kelley, G. Gurau, R. D. Rogers, Nature 528 (2015) 188 (https://doi.org/10.1038/528188a)

7. I. Szilagyi, T. Szabo, A. Desert, G. Trefalt, T. Oncsik, M. Borkovec, Phys. Chem. Chem. Phys. 16 (2014) 9515 (https://doi.org/10.1039/C4CP00804A)

8. P. Rouster, M. Pavlovic, T. Cao, B. Katana, I. Szilagyi, J. Phys. Chem. C. Article ASAP (https://doi.org/10.1021/acs.jpcc.9b03983)

T. Oncsik, A. Desert, G. Trefalt, M. Borkovec, I. Szilagyi, Phys. Chem. Chem. Phys. 18 (2016) 7511 (https://doi.org/10.1039/C5CP07238G)

J. Arning, S. Stolte, A. Böschen, F. Stock, W. R. Pitner, U. Welz-Biermann, B. Jastorff, J. Ranke, Green Chem. 10(1) (2008) 47 (https://doi.org/10.1039/B712109A)

X-D. Hou, Q-P. Liu, T. J. Smith, N. Li, M-H. Zong, PLoS ONE 8(3) (2013) 59145 (https://doi.org/10.1371/journal.pone.0059145)

R. Boethling, E. Sommer, D. DiFiore, Chem. Rev. 107(6) (2007) 2207 (https://doi.org/10.1021/cr050952t)

Q-P. Liu, X-D. Hou, N. Li, M-H. Min-Hua Zong, Green Chem. 14 (2014) 304 (https://doi.org/10.1039/C2GC16128A )

S. De Santis, G. Masci, F. Casciotta, R. Caminiti, E. Scarpellini, M. Campetella, L. Gontrani, Phys. Chem. Chem. Phys. 17 (2015) 20687 (https://doi.org/10.1039/C5CP01612F)

M. Petković, J. L. Ferguson, H. Q. N. Gunaratne, R. Ferreira, M. C. Leitão, K. R. Seddon, L. Paulo, N. Rebelo, C. S. Pereira, Green Chem. 12 (2010) 643 (https://doi.org/10.1039/B922247B)

S. H. Zeisel, K. A. da Costa, P. D. Franklin, E. A. Alexander, J. T. Lamont, N. F. Sheard, A. Beiser, FASEB 5(7) (1991) 2093 (https://doi.org/10.1016/S0899-9007 %2800 %2900349-X)

P. M. Ueland, J. Inherit, Metab. Dis. 34(1) (2011) 3 (https://doi.org/10.1007/s10545-010-9088-4)

M. R. Olthof, P. Verhoef, Curr. Drug Metab. 6(1) (2005) 15 (https://doi.org10.2174/1389200052997366)

A. L. Buchman, M. D. Dubin, A. A. Moukarzel, D. J. Jenden, M. Roch, K. M. Rice, J. Gornbein, M. E. Ament, Hepatology 22(15) (1995) 1399 (https://doi.org/10.1002/hep.1840220510)

A. L. Buchman, D. Jenden, M. D. Roch, J. Am. Coll. Nutr. 18 (1999) 598 (https://doi.org/10.1080/07315724.1999.10718894)

J. T. Penry, M. M. Manore, Int. J. Sport Nutr. Exerc. Metab. 18 (2008) 191 (https://doi.org/10.1123/ijsnem.18.2.191)

M. D. Stojanović, M. V. Stojanović, K. Kanostrevac, D. Veljović, B. Medjedović, S. M. Ostojić, Adv. Phys. Educ. 1(1) 2011 1 (https://doi.org/10.4236/ape.2011.11001)

J. R. Hoffman, N. A. Ratamess, A. Gonzalez, N. A. Beller, M. W. Hoffman, M. Olson, M. Purpura, R. Jäger, J. Int. Soc. Sports Nutr. 7 (2010) 39 (https://doi.org/10.1186/1550-2783-7-39)

A.Fonseca, J. W. Fell, C. P. Kurtzman, I. Spencer-Martins, Int. J. Syst. Evol. Microb. 50(1) (2000) 389 (https://dx.doi.org/10.1099/00207713-50-1-389)

M. Aedma, S. Timpmann, V. Ööpik, Eur. J. Appl. Physiol. 115(2) (2015) 387 (https://doi.org/10.1007/s00421-014-3025-4)

C. Russell, E. Papadopoulos, Y. Mezil, G. D. Wells, M. J. Plyley, M. Greenway, P. Klentrou, J. Int. Soc. Sports Nutr. 11 (2014) 26 (https://doi.org/10.1186/1550-2783-11-26)

T. G. Balshaw, T. M. Bampouras, T. J. Barry, S. A. Sparks, Amino Acids 44 (2013) 555 (https://doi.org/10.1007/s00726-012-1372-1)

L. A. da Silva, C. B. Tromm, K. F. Bom, I. Mariano, B. Pozzi, G. L. da Rosa, T. Tuon, G. da Luz, F. Vuolo, F. Petronilho, W. Cassiano, C. T. De Souza, R. A. Pinho, Appl. Physiol. Nutr. Metab. 39 (2013) 38 (https://doi.org/10.1139/apnm-2012-0229)

S. G. Ra, T. Miyazaki, K. Ishikura, H. Nagayama, S. Komine, Y. Nakata, S. Maeda, Y. Matsuzaki, H. Ohmori, J. Int. Soc. Sports Nutr. 10 (2013) 51 (https://doi.org/10.1186/1550-2783-10-51)

F. T. Rosa, E. C. Freitas, R. Deminice, A. A. Jordão, J. S. Marchini, Eur. J. Nutr. 53 (2014) 823 (https://doi.org/10.1007/s00394-013-0586-7)

A. De Luca, S. Pierno, D. C. Camerino, J. Transl. Med 13 (2015) 243 (https://doi.org/10.1186/s12967-015-0610-1)

B. Campbell, C. Wilborn, P. La Bounty, L. Taylor, M. T. Nelson, M. Greenwood, T. N. Ziegenfuss, H. L. Lopez, J. R. Hoffman, J. R. Stout, S. Schmitz, R. Collins, D. S. Kalman, J. Antonio, R. B. Kreider, J. Int. Soc. Sports Nutr. 10 (2013) 1 (https://doi.org/10.1186/1550-2783-10-1)

D. D. Četojević-Simin, A. S. Velićanski, D. D. Cvetković, S. L. Markov, J. Ž. Mrđanović, V. V. Bogdanović, S. V. Šolajić, Food Bioproc. Tech. 5 (2012) 1756 (https://doi.org/10.1007/s11947-010-0458-6)

P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bokesch, S. Kenney, M. R. Boyd, J. Natl. Cancer Inst. 82 (1990) 1107 (https://doi.org/10.1093/jnci/82.13.1107)

M. X. Huang, C. R. Zhou, X. W. Han, J. Therm. Anal. Calorim. 113(2) (2013) 589 (https://doi.org/10.1007/s10973-012-2785-5)

D. J. Tao, Z. Cheng, F. F. Chen, Z. M. Li, N. Hu, X. S. Chen, J. Chem. Eng. Data 58 (2013) 1542 (https://doi.org/10.1021/je303d 110)

Y. Okaya, Acta Crystallogr. 21 (1966) 726 (https://doi.org/10.1107/S0365110X66003785)

M. Vraneš, A. Tot, New Liquid Components in Formulation of Food Supplements, in Encyclopedia of Ionic Liquids, Suojiang Zhang, Ed., Springer, Singapore, Singapore, 2019, (https://doi.org/10.1007/978-981-10-6739-6_17-1)

S. A. Arrhenius, Z. Phys. Chem. 4 (1889) 96 (https://doi.org/10.1515/zpch-1889-0108)

E. Kress-Rogers, C. J. B. Brimelow, Instrumentation and Sensors for the Food Industry (2nd Ed.), Woodhead Publishing Limited, Abington, England, 2001 (ISBN 978-1-85573-560-6)




DOI: https://doi.org/10.2298/JSC190413047V

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.797 (139 of 171 journals)
5 Year Impact Factor 0.923 (134 of 171 journals)