Towards edible ionic liquids – Cholinium taurate

Milan Vraneš, Aleksandar Tot, Jovana Panić, Snežana Papović, Slobodan Gadžurić, Dragana Četojević-Simin

Abstract


In this work, the possibilities and benefits of using an ionic liquid as a potential dietary supplement are presented and discussed for the first time. Ionic liquids prevent the development of microorganisms due to high ion con­centration and thus, prevent perishability of the food products. Thermal stabil­ity, structure, as well as the experimental density and viscosity in the tempera­ture range from 20 to 50 °C and at the atmospheric pressure 1´105 Pa of newly synthesized cholinium taurate ionic liquid, [Chol][Tau], are determined. According to the performed physicochemical characterization, it can be con­cluded that the synthesized ionic liquid is suitable for application in the food industry. The temperature variation of viscosity and density is discussed in terms of processes, packaging, and storage of [Chol][Tau]. Also, the antiproli­ferative activity of [Chol][Tau] is determined and compared with those obtained for ascorbic acid and AspirinÒ as the standards.


Keywords


ionic liquids; food additive; synergistic effect; choline; taurine; anti-proliferative activity

References


A. Maia, Mini Rev. Org. Chem. 8 (2011) 178 (https://doi.org/10.2174/157019311795177826)

M. Petković, K. R. Seddon, L. P. N. Rebelo, C. S. Pereira, Chem. Soc. Rev. 40 (2011) 1383 (https://doi.org/10.1039/c004968a)

T. P. Pham, C. W. Cho, Y. S. Yun, Water Res. 44(2) (2010) 352 (https://doi.org/10.1016/j.watres.2009.09.030)

P. J. Scammells, J. L. Scott, R. D. Singer, Aus. J. Chem. 58 (2005) 155 (https://doi.org/10.1071/CH04272)

A. G. Santos, B. D. Ribeiro, D. S. Alviano, M. A. Z. Coelho, RSC Adv. 4(70) (2014) 37157 (https://doi.org/10.1039/c4ra05295a)

J. L. Shamshina, S. P. Kelley, G. Gurau, R. D. Rogers, Nature 528 (2015) 188 (https://doi.org/10.1038/528188a)

7. I. Szilagyi, T. Szabo, A. Desert, G. Trefalt, T. Oncsik, M. Borkovec, Phys. Chem. Chem. Phys. 16 (2014) 9515 (https://doi.org/10.1039/C4CP00804A)

8. P. Rouster, M. Pavlovic, T. Cao, B. Katana, I. Szilagyi, J. Phys. Chem., C, in press (https://doi.org/10.1021/acs.jpcc.9b03983)

T. Oncsik, A. Desert, G. Trefalt, M. Borkovec, I. Szilagyi, Phys. Chem. Chem. Phys. 18 (2016) 7511 (https://doi.org/10.1039/C5CP07238G)

J. Arning, S. Stolte, A. Böschen, F. Stock, W. R. Pitner, U. Welz-Biermann, B. Jastorff, J. Ranke, Green Chem. 10 (2008) 47 (https://doi.org/10.1039/B712109A)

X-D. Hou, Q-P. Liu, T. J. Smith, N. Li, M-H. Zong, PLoS ONE 8 (2013) 59145 (https://doi.org/10.1371/journal.pone.0059145)

R. Boethling, E. Sommer, D. DiFiore, Chem. Rev. 107 (2007) 2207 (https://doi.org/10.1021/cr050952t)

Q-P. Liu, X-D. Hou, N. Li, M-H. Min-Hua Zong, Green Chem. 14 (2014) 304 (https://doi.org/10.1039/C2GC16128A)

S. De Santis, G. Masci, F. Casciotta, R. Caminiti, E. Scarpellini, M. Campetella, L. Gontrani, Phys. Chem. Chem. Phys. 17 (2015) 20687 (https://doi.org/10.1039/C5CP01612F)

M. Petković, J. L. Ferguson, H. Q. N. Gunaratne, R. Ferreira, M. C. Leitão, K. R. Seddon, L. Paulo, N. Rebelo, C. S. Pereira, Green Chem. 12 (2010) 643 (https://doi.org/10.1039/B922247B)

S. H. Zeisel, K. A. da Costa, P. D. Franklin, E. A. Alexander, J. T. Lamont, N. F. Sheard, A. Beiser, FASEB 5 (1991) 2093 (https://doi.org/10.1016/S0899-9007 %2800 %2900349-X)

P. M. Ueland, J. Inherit, Metab. Dis. 34 (2011) 3 (https://doi.org/10.1007/s10545-010-9088-4)

M. R. Olthof, P. Verhoef, Curr. Drug Metab. 6 (2005) 15 (https://doi.org10.2174/1389200052997366)

A. L. Buchman, M. D. Dubin, A. A. Moukarzel, D. J. Jenden, M. Roch, K. M. Rice, J. Gornbein, M. E. Ament, Hepatology 22 (1995) 1399 (https://doi.org/10.1002/hep.1840220510)

A. L. Buchman, D. Jenden, M. D. Roch, J. Am. Coll. Nutr. 18 (1999) 598 (https://doi.org/10.1080/07315724.1999.10718894)

J. T. Penry, M. M. Manore, Int. J. Sport Nutr. Exerc. Metab. 18 (2008) 191 (https://doi.org/10.1123/ijsnem.18.2.191)

M. D. Stojanović, M. V. Stojanović, K. Kanostrevac, D. Veljović, B. Medjedović, S. M. Ostojić, Adv. Phys. Educ. 1 (2011) 1 (https://doi.org/10.4236/ape.2011.11001)

J. R. Hoffman, N. A. Ratamess, A. Gonzalez, N. A. Beller, M. W. Hoffman, M. Olson, M. Purpura, R. Jäger, J. Int. Soc. Sports Nutr. 7 (2010) 39 (https://doi.org/10.1186/1550-2783-7-39)

A.Fonseca, J. W. Fell, C. P. Kurtzman, I. Spencer-Martins, Int. J. Syst. Evol. Microb. 50(1) (2000) 389 (https://dx.doi.org/10.1099/00207713-50-1-389)

M. Aedma, S. Timpmann, V. Ööpik, Eur. J. Appl. Physiol. 115 (2015) 387 (https://doi.org/10.1007/s00421-014-3025-4)

C. Russell, E. Papadopoulos, Y. Mezil, G. D. Wells, M. J. Plyley, M. Greenway, P. Klen¬trou, J. Int. Soc. Sports Nutr. 11 (2014) 26 (https://doi.org/10.1186/1550-2783-11-26)

T. G. Balshaw, T. M. Bampouras, T. J. Barry, S. A. Sparks, Amino Acids 44 (2013) 555 (https://doi.org/10.1007/s00726-012-1372-1)

L. A. da Silva, C. B. Tromm, K. F. Bom, I. Mariano, B. Pozzi, G. L. da Rosa, T. Tuon, G. da Luz, F. Vuolo, F. Petronilho, W. Cassiano, C. T. De Souza, R. A. Pinho, Appl. Physiol. Nutr. Metab. 39 (2013) 38 (https://doi.org/10.1139/apnm-2012-0229)

S. G. Ra, T. Miyazaki, K. Ishikura, H. Nagayama, S. Komine, Y. Nakata, S. Maeda, Y. Matsuzaki, H. Ohmori, J. Int. Soc. Sports Nutr. 10 (2013) 51 (https://doi.org/10.1186/1550-2783-10-51)

F. T. Rosa, E. C. Freitas, R. Deminice, A. A. Jordão, J. S. Marchini, Eur. J. Nutr. 53 (2014) 823 (https://doi.org/10.1007/s00394-013-0586-7)

A. De Luca, S. Pierno, D. C. Camerino, J. Transl. Med. 13 (2015) 243 (https://doi.org/10.1186/s12967-015-0610-1)

B. Campbell, C. Wilborn, P. La Bounty, L. Taylor, M. T. Nelson, M. Greenwood, T. N. Ziegenfuss, H. L. Lopez, J. R. Hoffman, J. R. Stout, S. Schmitz, R. Collins, D. S. Kalman, J. Antonio, R. B. Kreider, J. Int. Soc. Sports Nutr. 10 (2013) 1 (https://doi.org/10.1186/1550-2783-10-1)

D. D. Četojević-Simin, A. S. Velićanski, D. D. Cvetković, S. L. Markov, J. Ž. Mrđanović, V. V. Bogdanović, S. V. Šolajić, Food Bioproc. Tech. 5 (2012) 1756 (https://doi.org/10.1007/s11947-010-0458-6)

P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bokesch, S. Kenney, M. R. Boyd, J. Natl. Cancer Inst. 82 (1990) 1107 (https://doi.org/10.1093/jnci/82.13.1107)

M. X. Huang, C. R. Zhou, X. W. Han, J. Therm. Anal. Calorim. 113 (2013) 589 (https://doi.org/10.1007/s10973-012-2785-5)

D. J. Tao, Z. Cheng, F. F. Chen, Z. M. Li, N. Hu, X. S. Chen, J. Chem. Eng. Data 58 (2013) 1542 (https://doi.org/10.1021/je303d 110)

M. Vraneš, A. Tot, in Encyclopedia of Ionic Liquids, S. Zhang, Ed., Springer, Singapore, 2019 (https://doi.org/10.1007/978-981-10-6739-6_17-1)

Y. Okaya, Acta Crystallogr. 21 (1966) 726 (https://doi.org/10.1107/S0365110X66003785)

S. A. Arrhenius, Z. Phys. Chem. 4 (1889) 96 (https://doi.org/10.1515/zpch-1889-0108




DOI: https://doi.org/10.2298/JSC190413047V

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)