DNA/BSA interactions and cytotoxic studies of tetradentate N,N,O,O-Schiff base copper(II) complexes Scientific paper

Main Article Content

Aleksandar Mijatovic
https://orcid.org/0000-0002-5553-9244
Angelina Cakovic
https://orcid.org/0000-0003-3909-4211
Aleksandar Lolic
https://orcid.org/0000-0002-5354-9019
Snezana Sretenovic
https://orcid.org/0009-0002-0515-7931
Marko Zivanovic
https://orcid.org/0000-0002-8833-8035
Biljana Petrovic
Jovana Bogojeski
https://orcid.org/0000-0002-3433-7774
Dragana Seklic
https://orcid.org/0000-0002-2093-5335

Abstract

Three Schiff base Cu(II) complexes, (N,N’-bis(acetylacetone)­propyl­enediimine)copper(II) complex, [Cu(acac2pn)] (1), (N,N'-bis-(ben­zoyl­acet­one)propylenediimine)copper(II) complex, [Cu(phacac2pn)] (2) and (N,N’-bis-(trifluoroacetylacetone)propylenediimine)­copper(II) complex, [Cu(tfacac2pn)] (3), were used to investigate the interactions with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) using the electronic absorption and spectro­scopic fluorescence methods. UV–Vis absorption studies showed that studied complexes interact with DNA molecule and exhibit moderate binding affinity. Fluorescence studies of complexes 13 also showed a possibility for DNA int­ercalation as well as a relatively high binding ability toward BSA. Among the tested complexes, the highest affinity for DNA and BSA molecules was shown by complex 1. Cytotoxic analyses, performed on human colorectal carcinoma HCT-116 and healthy lung fibroblast MRC-5 cell lines, showed that complex 2 exhibited activity on both cell lines, while complexes 1 and 3 did not show any activity.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
A. Mijatovic, “DNA/BSA interactions and cytotoxic studies of tetradentate N,N,O,O-Schiff base copper(II) complexes: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 12, pp. 1307–1317, Dec. 2023.
Section
Theme issue honoring Professor Vukadin Leovac's 80th birthday

Funding data

References

J. C. Dabrowiak, Metals in Medicine, 2nd ed., Wiley, New York, 2017 (ISBN:9781119191377, (https://doi.org/10.1002/9781119191377))

S. Medicia, M. Peanaa, V. M. Nurchib, J. I. Lachowiczb, G. Crisponib, M. A. Zoroddua, Coord. Chem. Rev. 284 (2015) 329 (https://doi.org/10.1016/j.ccr.2014.08.002)

F. Tistao, C. Marzano, M. Porchia, M. Pellei, C. Santini, Med. Res. Rev. 30 (2010) 708 (https://doi.org/10.1002/med.20174)

C. Marzano, M. Pellei, F. Tristao, C. Santini, Anticancer Agents Med. Chem. 9 (2009) 185 (https://doi.org/10.2174/187152009787313837)

M. Karmakar, S. Chattopadhyay, J. Mol. Struct. 1186 (2019) 155 (https://doi.org/10.1016/J.MOLSTRUC.2019.02.091)

C. Boulechfar, H. Ferkous, A. Delimi, A. Djedouani, A. Kahlouche, A. Boublia, A.S. Darwish, T. Lemaoui, R. Verma, Y. Benguerba, Inorg. Chem. Commun. 150 (2023) 110451 (https://doi.org/10.1016/j.inoche.2023.110451)

S. Yamada, Coord. Chem. Rev. 1 (1966) 415 (https://doi.org/10.1016/S0010-8545(00)80184-8)

L. H. A. Rahman, R. M. E. Khatib, L. A. E. Nassr, A. M. A. Dief, F. E. Lashin, Spectrochim. Acta, A 111 (2013) 266 (https://doi.org/10.1016/j.saa.2013.03.061)

L. H. A. Rahman, R. M. E. Khatib, L. A. E. Nassr, A. M. A. Dief, A. A. Seleem, Spectrochim. Acta, A 117 (2014) 366 (https://doi.org/10.1016/j.saa.2013.07.056)

X. G. Ran, L. Y. Wang, Y. C. Lin, J. Hao, D. R. Cao, Appl. Organometal. Chem. 24 (2010) 741 (https://doi.org/10.1002/aoc.1678)

F. Zhao, W. Wang, W. Lu, L. Xu, S. Yang, X. Cai, M. Zhou, M. Lei, M. Ma, H. Xu, F. Cao, Eur. J. Med. Chem. 146 (2018) 451 (https://doi.org/10.1016/j.ejmech.2018.01.041)

R. Fekri, M. Salehi, A. Asadi, M. Kubicki, Inorg. Chim. Acta 484 (2018) 245 (https://doi.org/10.1016/J.ICA.2018.09.022)

L. N. Ji, X. H. Zou, J. G. Liu, Coord. Chem. Rev. 216 (2001) 513 (https://doi.org/10.1016/S0010-8545(01)00338-1)

A. Nori, J. Kopecek, Adv. Drug Delivery Rev. 57 (2005) 609 (https://doi.org/10.1016/j.addr.2004.10.006)

R. K. Gupta, R. Pandey, G. Sharma, R. Prasad, B. Koch, S. Srikrishna, P. Z. Li, Q. Xu, D. S. Pandey, Inorg. Chem. 52 (2013) 3687 (https://doi.org/10.1021/ic302196v)

M. Ganeshpandian, R. Loganathan, E. Suresh, A. Riyasdeen, M. A. Akbarshad, M. Palaniandavar, Dalton Trans. 43 (2014) 1203 (https://doi.org/10.1039/C3DT51641E)

R. Baosic, D. Milojkovic-Opsenica, Z. Tesic, J. Planar Chromatogr. – Mod. TLC 16 (2003) 412 ( https://doi.org/10.1556/JPC.15.2002.4.4)

P. J. Mc Carthy, R. J. Hovey, K. Ueno, A. E. Martel, J. Am. Chem. Soc. 77 (1955) 5820 (https://doi.org/10.1021/ja01627a011)

N. Stevanovic, D. Apostolovic, M. Milcic, A. Lolic, M. van Hage, T. Cirkovic Velickovic, R. Baosic, New J. Chem. 45 (2021) 6231 (https://doi.org/10.1039/d1nj00040c)

F. Dimiza, S. Fountoulaki, A. N. Papadopoulos, C. A. Kontogiorgis, V. Tangoulis, C. P. Raptopoulou, V. Psycharis, A. Terzis, D. P. Kessissoglou, G. Psomas, Dalton Trans. 40 (2011) 8555 (https://doi.org/10.1039/c1dt10714c)

F. Dimiza, F. Perdih, V. Tangoulis, I. Turel, D. P. Kessissoglou, G. Psomas, J. Inorg. Biochem. 105 (2011) 476 (https://doi.org/10.1016/j.jinorgbio.2010.08.013)

P. Čanović, J. Bogojeski, J.V. Košarić, S.D. Marković, M.N. Živanović. Turk. J. Biol. 41 (2017) 141 ( https://doi.org/10.3906/BIY-1605-77)

J. V. Košarić, D. M. Cvetković, M. N. Živanović, M. G. Ćurčić, D. S. Šeklić, Z. M. Bugarčić, S. D. Marković. J. Buon. 19 (2014) 283 (https://jbuon.com/archive/19-1-283.pdf)

A. Petrović, M. M. Milutinović, E. T. Petri, M. Živanović, N. Milivojević, R. Puchta, A. Scheurer, J. Korzekwa, O. R. Klisurić, J. Bogojeski, Inorg. Chem. 58 (2019) 307 (https://doi.org/10.1021/acs.inorgchem.8b02390)

O. Novakova, H. Chen, O. Vrana, A. Rodger, P. J. Sadler, V. Brabec, Biochemistry 42 (2003) 11544 (https://doi.org/10.1021/bi034933u)

E. S. Koumousi, M. Zampakou, C. P. Raptopoulou, V. Psycharis, C. M. Beavers, S. J. Teat, G. Psomas and T. C. Stamatatos, Inorg. Chem. 5 (2012) 7699 (https://doi.org/10.1021/ic300739x)

M. M. Milutinović, J. V. Bogojeski, O. Klisurić, A. Scheurer, S. K. C. Elmroth, Ž. D. Bugarčić, Dalton Trans. 45 (2016) 15481 (https://doi.org/10.1039/c6dt02772e)

J. M. Kelly, A. B. Tossi, D. J. McConnell, C. Oh Uigin, Nucleic Acids Res. 13 (1985) 6017 (https://doi.org/10.1093/nar/13.17.6017)

B. C. Boger, B. E. Fink, S. R. Brunette, W. C. Tse, M. P. Hedrick, J. Am. Chem. Soc. 123 (2001) 5878 (https://doi.org/10.1021/ja010041a)

D. Senthil Raja, N. S. P. Bhuvanesh, K. Natarajan, Inorg. Chem. 50 (2011) 12852 (https://doi.org/10.1021/ic2020308 )

J. Steinhardt, J. Krijn and J. G. Leidy, Biochemistry 10 (1971) 4005 (https://doi.org/10.1021/bi00798a001)

Y. Song, Y. Liu, W. Liu, F. A. Villamena and J. L. Zweier, RSC Adv. 4 (2014) 47649 (https://doi.org/10.1039/C4RA04616A)

F. Wang, W. Huang, Z. Dai, J. Mol. Struct. 875 (2008) 509 (https://doi.org/10.1016/j.molstruc.2007.05.034)

A. Mijatović, N. Gligorijevic, D. Cocic, S. Spasic, A. Lolić, S. Aranđelović, M. Nikolić, R. Baošić, J. Inorg. Biochem. 244 (2023) 112224 (https://doi.org/10.1016/j.jinorgbio.2023.112224).

Most read articles by the same author(s)