The reactivity of dopamine precursors and metabolites towards ABTS• –: An experimental and theoretical study
Main Article Content
Abstract
The antiradical activity of l-3,4-dihydroxyphenylalanine (l-DOPA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid and tyrosine towards 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt radical (ABTS·-) was investigated experimentally and theoretically by UV–Vis spectroscopy and the DFT theory. The importance of the catechol moiety for this reaction was proven due to the formation of intramolecular hydrogen bond in the formed anions and radicals. The results indicated l-DOPA and DOPAC were more potent radical scavengers than homovanillic acid and tyrosine just because of intramolecular hydrogen bond formation. Based on experimental spectra, it was proved that electron transfer led to the reduction of ABTS·-. The values of thermodynamic parameters were used to predict the preferred mechanism. The reaction rates were calculated for the electron transfer processes and it was shown that these were both kinetically and thermodynamically driven processes. Based on the reaction rate values, thermodynamic parameters, and present species, as determined by electronic spectra, it was concluded that single proton loss electron transfer (SPLET) is the dominant reaction mechanism in the investigated system.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
B. Halliwell, J. M. C. Gutteridge, Free Radicals in Biology and Medicine, 3rd ed., Clarendon Press, Oxford, 1999 (https://doi.org/10.1093/acprof:oso/9780198717478.001.0001)
T. L. Lemke, D. A. Williams, V. F. Roche, S. W. Zito, Foyes principles of medicinal chemistry, Wolters Kluwer Health/Lippincott Williams & Wilkins, 2012 (ISBN 9781451181135)
J. Smythies, Antioxid. Redox Signal. 2 (2000) 575 (https://doi.org/10.1089/15230860050192332)
O. Hornykiewicz, Mov. Disord. 17 (2002) 501 (https://doi.org/10.1002/mds.10115)
R. M. Berman, M. Narasimhan, H. L. Miller, A. Anand, A. Cappiello, D. A. Oren, G. R. Heninger, D. S. Charney, Arch. Gen. Psychiatry 56 (1999) 395 (https://doi.org/10.1001/archpsyc.56.5.395)
L. Pauling, Science 160 (1968) 265 (https://doi.org/10.1126/science.160.3825.265)
D. Dimić, D. Milenković, J. Dimitrić Marković, Z. Marković, Phys. Chem. Chem. Phys. 128 (2017) 16655 (https://doi.org/10.1039/C7CP01716B)
R. L. Prior, X. Wu, K. Schaich, J. Agric. Food Chem. 53 (2005) 4290 (https://doi.org/10.1021/jf0502698)
R. Apak, M. Özyürek, K. Güçlü, E. Çapanoʇlu, J. Agric. Food Chem. 64 (2016) 1028 (https://doi.org/10.1021/acs.jafc.5b04743)
N. J. Christensen, K. P. Kepp, J. Mol. Catal., B: Enzym. 100 (2014) 68 (https://doi.org/10.1016/j.molcatb.2013.11.017)
A. M. Campos, E. A. Lissi, Int. J. Chem. Kin. 29 (1997) 219 (https://doi.org/10.1002/(SICI)1097-4601(1997)29:3<219::AID-KIN9>3.0.CO;2-X)
X. Tian, K. M. Schaich, J. Agric. Food Chem. 61 (2013) 5511 (https://doi.org/10.1021/jf4010725)
D. Dimić, D. Milenković, J. D. Marković, Z. Marković, Mol. Phys. (2018) 1166 (https://doi.org/10.1080/00268976.2017.1414967)
C. Iuga, J. R. Alvarez-Idaboy, A. Vivier-Bunge, J. Phys. Chem., B 115 (2011) 12234 (https://doi.org/10.1021/jp206347u)
R. Álvarez-Diduk, A. Galano, J. Phys. Chem., B 119 (2015) 3479 (https://doi.org/10.1021/acs.jpcb.5b00052)
C. Sârbu, D. Casoni, Open Chem. 11 (2013) 679 (https://doi.org/10.2478/s11532-013-0210-y)
A. Kladna, P. Berczynski, I. Kruk, T. Michalska, A.-E. Hy, Luminescence 28 (2013) 450 (https://doi.org/10.1002/bio.2475)
İ. Gülçin, Chem. Biol. Interact. 179 (2009) 71 (https://doi.org/10.1016/j.cbi.2008.09.023)
A. Galano, J. Mex. Chem. Soc. 59 (2015) 231 (http://dx.doi.org/10.29356/jmcs.v59i4.81)
R. Re, N. Pellegrini, A. Proteggebte, A. Pannala, M. Yang, C. Rice-Evans, Free Radic. Biol. Med. 26 (1999) 1231 (https://doi.org/10.1016/S0891-5849(98)00315-3)
T. H. Dunning, J. Chem. Phys. 90 (1989) 1007 (https://doi.org/10.1063/1.456153)
Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 120 (2007) 215 (https://doi.org/10.1007/s00214-007-0310-x)
Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford, CT, 2009 (https://gaussian.com/g09_c01/)
A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem., B 113 (2009) 6378 (https://doi.org/10.1021/jp810292n)
J. P. Foster, F. Weinhold, J. Am. Chem. Soc. 102 (1980) 7211 (https://doi.org/10.1021/ja00544a007)
NBO 6.0., Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2009
R. Marcus, Rev. Mod. Phys. 65 (1993) 599 (https://doi.org/10.1103/RevModPhys.65.599)
F. C. Collins, G. E. Kimball, J. Colloid Sci. 4 (1949) 425 (https://doi.org/10.1016/0095-8522(49)90023-9)
R. B. Walker, J. D. Everette, J. Agric. Food Chem. 57 (2009) 1155 (https://doi.org/10.1021/jf8026765)
S. L. Scott, W. J. Chen, A. Bakac, J. H. Espenson, J. Phys. Chem. 97 (1993) 6710 (https://doi.org/10.1021/j100127a022)
T. Miura, S. Muraoka, T. Ogiso, Biochem. Pharmacol. 55 (1998) 2001 (https://doi.org/10.1016/S0006-2952(98)00075-6)
F.-D. Munteanu, C. Basto, G. M. Gübitz, A. Cavaco-Paulo, Ultrason. Sonochem. 14 (2007) 363 (https://doi.org/10.1016/j.ultsonch.2006.07.008)
R. Apak, M. Özyürek, K. Güçlü, E. Çapanoʇlu, J. Agric. Food Chem. 64 (2016) 997 (https://doi.org/10.1021/acs.jafc.5b04739)
O. Erel, Clin. Biochem. 37 (2004) 277 (https://doi.org/10.1016/j.clinbiochem.2003.11.015)
Z. Marković, J. Tošović, D. Milenković, S. Marković, Comput. Theor. Chem. 1077 (2016) 11 (https://doi.org/10.1016/j.comptc.2015.09.007)
N. Nenadis, L. F. Wang, M. Tsimidou, H. Y. Zhang, J. Agric. Food Chem. 52 (2004) 4669 (https://doi.org/10.1021/jf0400056).