PCR-based detection of alkane monooxygenase genes in the hydrocarbon and crude oil-degrading Acinetobacter strains from petroleum-contaminated soils Scientific paper
Main Article Content
Abstract
Bacterial strains D11, E1 and E2 isolated from petroleum-contaminated soils were found to be members of Acinetobacter genus revealed by 16S rRNA gene sequence analysis and phenotypic characteristics. After incubation for 5 days, about 43, 9 and 12 % of total petroleum hydrocarbons of crude oil were degraded by strains D11, E1 and E2, respectively, and determined by GC–MS analysis. Moreover, about 70 and 76 % of single hydrocarbon hexadecane was degraded by the strains D11 and E1 after 3 days of short incubation time, respectively, while the strain E2 degraded about 48 % of single hydrocarbon pentadecane. By using PCR-based method, gene sequences of the strains D11 and E2 showed similarity to alkane 1-monooxygenases from Acinetobacter sp. BUU8 alkM with 93.06 and 92.72 %, respectively, while the sequence similarity of strain E1 was 95.84 % to Acinetobacter sp. 826659. The present study of hydrocarbon biodegradation by Acinetobacter strains may provide a good advantage in bioremediation process.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
-
Dicle Üniversitesi
Grant numbers FEN.19.014
References
R. Bajagain, Y. Park, S. W Jeong, Sci. Total Environ. (2018) 1236 (https://doi.org/10.1016/j.scitotenv.2018.01.212)
S. J. Varjani, Bioresour. Technol. 223 (2017) 277 (http://dx.doi.org/10.1016/j.biortech.2016.10.037)
Z .Zhang, Z. Hou, C. Yang, C. Ma, F. Tao & P. Xu, Bioresour. Technol. 102 (2011) 4111 (https://dx.doi.org/10.1016/j.biortech.2010.12.064)
M. B. Yakubu, Afr. J. Biotechnol. 6 (2007) 2735 (https://doi.org/10.5897/AJB2007.000-2437)
K. Kloos, J. C. Munch, M. Schloter, J.Microbiol. Methods 66 (2006)486 (https://doi.org/10.1016/j.mimet.2006.01.014)
C. O. Gill,C. Ratledge, J. Gen. Microbiol. 72 (1972) 165 (https://doi.org/10.1099/00221287-72-1-165)
D. M. Al-Mailem, N. A. Sorkhoh, H. Al-Awadhi, M. Eliyas, S. S. Radwan, Extremophiles 14 (2010) 321 (https://doi.org/10.1007/s00792-010-0312-9)
F. Chaillan, A. Le Flèche, E. Bury,Y. Phantavong, P. Grimont, A. Saliot, J. Oudot, Res. Microbiol. 155 (2004) 587 (https://doi.org/10.1016/j.resmic.2004.04.006)
S. J. Varjani, D. P. Rana, A. K. Jain, S. Bateja, V. N. Upasani, Int. Biodeterior. Biodegrad. 103 (2015)116 (http://dx.doi.org/10.1016/j.ibiod.2015.03.030)
R. K. Jain, M. Kapur, S. Labana, B. Lal, P. Sarma, D. Mhattacharya, I. S.Thakur, Curr. Sci. 89 (2005) 101 (https://www.jstor.org/stable/24110436)
B. Thapa, A Kumar KC, A. Ghimire, Kathmandu Univ. J. Sci. Eng. Technol. 8 (2012) 164 (https://doi.org/10.3126/kuset.v8i1.6056)
W. Xia, H. Dong, C. Zheng, Q. Cui, P. He, Y. Tang, RSC Adv. 5 (2015) 102367 (https://doi.org/10.1039/C5RA17137G)
K. Sadighbayan, M. M. Assadi, A. Farazmand, A. R. Monadi, N. Aliasgharzad, H. Mobaiyen, Ramin Zadghaffari, Adv. Biores. 7 (2016) 57 (https://soeagra.com/abr/march_2016/11f.pdf)
A. Ratajczak, W. Geissdoerfer, W. Hillen, Appl. Environ. Microbiol. 64 (1998) 1175 (https://doi.org/10.1128/AEM.64.4.1175-1179.1998)
A. Ratajczak, W. Geissdoerfer, W. Hillen, J. Bacteriol. 180 (1998) 5822 (https://doi.org/10.1128/JB.180.22.5822-5827.1998)
S. Phrommanich, S. Suanjit, S. Upatham, S. V. Grams, M. Kruatrachue, P. Pokethitiyook, G. Korge, A. Hofmann, Microbiol. Res. 164 (2009) 486 (https://doi.org/10.1016/j.micres.2007.03.002)
J. Jung, E. L. Madsen, C. O. Jeon, W Park, Appl. Environ. Microbiol. 77 (2011) 7418 (https://doi.org/10.1128/AEM.05231-11)
H. Liu, J. Yao, Z. Yuan, Z. M. Yuan, Y. F. Shang, H. L. Chen, F. Wang, K. Masakorala, C. Yu, M. Cai, R. E. Blake, M. M. F. Choi, Int. Biodeterior. Biodegrad. 87 (2014) 52 (https://doi.org/10.1016/j.ibiod.2013.11.005)
S. Muthukamalam, S. Sivagangavathi, D. Dhrishya, S. S. Rani, Braz. J. Microbiol. 48 (2017) 637 (https://doi.org/10.1016/j.bjm.2017.02.007)
F. Bendadeche, M. B. B. Hamed, S. Ayad, J. Environ. Eng. Sci. (2019) 131 (https://doi.org/10.17265/2162-5298/2019.04.001)
W. Geissdoerfer, R. G. Kok, A. Ratajczak, K. J. Hellingwerf, W. Hillen, J. Bacteriol. 181 (1999) 4292 (https://doi.org/10.1128/jb.181.14.4292-4298.1999)
Y. Liu, A. Ding, Y. Sun, X. Xia, D. Zhang, Front. Environ. Sci. Eng. 12 (2018) 3 (https://doi.org/10.1007/s11783-018-1064-5)
S. Min, L. Qun, S. Xian-rong, H. Deng-yong, H. Ying, S. Zhan, W. Qing-Rong, Afr. J. Microbiol. Res. 6 (2012) 3936 (https://doi.org/10.5897/AJMR12.278)
H. P. Dussault, J. Bacteriol. 70 (1955) 484 (https://doi.org/10.1128/jb.70.4.484-485.1955)
B. Lányi, Methods Microbiol. 19 (1988) 1 (https://doi.org/10.1016/S0580-9517(08)70407-0)
D. H. Bergey, N. R. Krieg, J. G. Holt, Bergey's manual of systematic bacteriology, Williams and Wilkins Co, Baltimore, 1989
D. Claus, and C. W. Berkeley, in: Bergey’s manual of systematic bacteriology, 1986, p. 1105
M. Kimura, J. Mol. Evol. 16 (1980) 111 (https://doi.org/10.1007/BF01731581)
N. Saitou, M. Nei, Mol. Biol. Evol. 4 (1987) 406 (https://doi.org/10.1093/oxfordjournals.molbev.a040454)
K. Tamura, G. Stecher, S. Kumar, Mol. Biol. Evol. 38 (2021) 3022 (https://doi.org/10.1093/molbev/msab120)
J. D. Thompson, D. G. Higgins,T. J. Gibson, Nucleic Acids Res. 22 (1994) 4673 (https://doi.org/10.1093/nar/22.22.4673)
S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, D. J. Lipman, Nucleic Acids Res. 25 (1997) 3389 (https://doi.org/10.1093/nar/25.17.3389)
A. Marchler-Bauer, M. K. Derbyshire, N. R. Gonzales, S. Lu, F. Chitsaz, L. Y. Geer, S. H. Bryant, Nucleic Acids Res. 43 (2015) 222 (https://doi.org/10.1093/nar/gku1221)
R. A. Laskowski, M. W. MacArthur, D. S. Moss, J. M. Thornton, Appl. Crystallogr. 26 (1993) 283 (https://doi.org/10.1107/S0021889892009944)
J. Henrichsen, Acta Pathol. Microbiol. Scand., B 83 (1975) 179 (https://doi.org/10.1111/j.1699-0463.1975.tb00090.x)
Y. S. Kang, W. Park, Environ. Microbiol. 12 (2010) 1304 (https://doi.org/10.1111/j.1462-2920.2010.02175.x)
Ö. Acer, K. Güven, F. Matpan Bekler, R. Gül-Güven, Bioremediat. J. 20 (2016) 1 (https://doi.org/10.1080/10889868.2015.1096898)
Q. Zhang, D. Wang, M. Li, W. N. Xiang,V. Achal, Front. Earth Sci. 8 (2014) 58 (https://doi.org/10.1007/s11707-013-0415-6)
D. Kim, K. S. Baik, M. S. Kim, S. C. Park, S. S. Kim, M. S. Rhee, Y. S. Kwak, C. N. Seong, J. Microbiol. 46 (2008) 46 (https://doi.org/10.1007/s12275-008-0118-y)
H. Yuan, J. Yao, K. Masakorala, F. Wang, M. Cai, C. Yu, Environ. Sci. Pollut. 21 (2014) 2724 (https://doi.org/10.1007/s11356-013-2221-9)
A. Sawadogo, O. C. Harmonie, J. B. Sawadogo, A. Kaboré, A. S. Traoré, D. Dianou, J. Environ. Prot. 5 (2014)1183 (https://doi.org/10.4236/jep.2014.512115)
S. Yoshida, K. Tazaki, T. Minamikawa, Phytochemistry 14 (1975) 195 (https://doi.org/10.1016/0031-9422(75)85036-9)
Y. Wang, Q. Wang, L. Liu, Int. J. Environ. Res. Public Health. 16 (2019) 188 (https://doi.org/10.3390/ijerph16020188)
J. B van Beilen, Z. Li, W. A. Duetz, T. H. M. Smits, B. Witholt, Oil Gas Sci. Technol. 58 (2003) 427 (https://doi.org/10.2516/ogst:2003026)
J.-Q. Sun, L. Xu, Y.-Q.Tang, F.-M. Chen, X.-L. Wu, Bioresour. Technol. 123 (2012) 664 (https://doi.org/10.1016/j.biortech.2012.06.072)
M. Throne-Holst, A. Wentzel, T. E. Ellingsen, H. K. Kotlar, S. B. Zotchev, Appl. Environ. Microbiol. 73 (2007) 3327 (https://doi.org/10.1128/AEM.00064-07)
P. Anbu, M. J. Nouh, D. H. Kim, J. S. Seo, B. K. Hur, K. H. Min, Afr. J. Biotechnol. 10 (2011) 4147 (https://academicjournals.org/journal/AJB/article-full-text-pdf/467B98830582)
A. M. Tanase, R. Ionescu, I. Chiciudean, T. Vassu, I.S toica, Int. Biodeterior. Biodegradation 84 (2012) 150 (https://doi.org/10.1016/j.ibiod.2012.05.022)
D. Cerqueda-Garcíaa, J. Q. García-Maldonadob, L. Aguirre-Macedoc, U. García-Cruz, Mar. Pollut. Bull. 150 (2020) 110775 (https://doi.org/10.1016/j.marpolbul.2019.110775)
H. Li, X. L. Wang, B. Z. Mub, J. D. Gu, Y. D. Liu, K. F. Lin, S. G. Lu, Q. Lu, B. Z. Li, Y. Y. Li, X. M. Du, Int. Biodeterior. Biodegradation 76 (2013) 49 (https://doi.org/10.1016/j.ibiod.2012.06.007)
S. A. Adebusoye, M. O. Ilori, O. O. Amund, O. D. Teniola, S. O. Olatope, World J. Microbiol. Biotechnol. 23 (2007) 1149 (https://doi.org/10.1007/s11274-007-9345-3)
J. Zheng, J. Q. Feng, L. Zhou, S. M. Mbadinga, J.-D. Gu, B.-Z. Mu, World J. Microbiol. Biotechnol. 34 (2018) 1 (https://doi.org/10.1007/s11274-018-2417-8)
Y. Tapilatu, M. Acquaviva, C. Guigue, G. Miralles, J. C. Bertrand, P. Cuny, Lett. Appl. Microbiol. 50 (2009) 234 (https://doi.org/10.1111/j.1472-765X.2009.02766.x)
T. Nikhil, V. Deepa, G.Rohan, B. Satish, Int. J. Environ. Res. 2 (2013) 48 (http://www.isca.me/IJENS/Archive/v2/i2/8.ISCA-IRJEvS-2012-092.pdf)
S. K. Panda, R. N. Kar, C. R. Panda, Int. J. Environ. Sci. 3 (2013) 1314 (https://doi.org/10.6088/ijes.2013030500001)
X. Tian, X. Wang, S. Peng, Z. Wang, R. Zhou, H. Tian, Water Sci. Technol. 78 (2019) 2626 (https://doi.org/10.2166/wst.2019.025)
I. Jerin, M. Rahi, T. Sultan, M. S. Islam, S. A. Sajib, K. M.H oque, M. A. Reza, Arch. Microbiol. 203 (2021) 5075 (https://doi.org/10.1007/s00203-021-02469-2).