Optimization of the thermostable alkaline and Ca-dependent alpha-amylase production from Bacillus paralicheniformis by statistical modeling
Main Article Content
Abstract
A novel amylolytic enzyme producing thermoalkaliphilic bacterium, the source of industrially used enzymes was isolated. Isolated strain was identified by morphological, physio-biochemical tests and the 16S rRNA gene sequence analysis. The optimal conditions of enzyme activity were determined. For higher alpha-amylase production, the variables such as yeast extract, starch, CaCl2, (NH4)2SO4, NaCl and MgSO4 in the a-amylase production medium, the temperature and pH were screened by Plackett–Burman design and optimised using response surface methodology (RSM). The optimal conditions were found to be 0.15 g/L for starch, 0.15 mg/L for CaCl2 and 60 °C for temperature. By using RSM model, amylase production increase was achieved sevenfold. It is showed that this method can be utilised to optimize alpha-amylase production in athermophilic bacteria such as Bacillus paralicheniformis.
Downloads
Metrics
Article Details
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
S. Sivaramakrishnan, D. Gangadharan, K. N. Madhavan, A. Pandey, Food Technol. Biotechnol. 44 (2006) 269 (http://www.ftb.com.hr/images/pdfarticles/2006/April-June/44-269.pdf)
M. J. E. C. Van der Maarel, B. Van der Veen, J. C. M. Uitdehaag, H. Leemhuis, L. Dijk¬huizen, J. Biotechnol. 94 (2002) 137 (https://doi.org/10.1016/S0168-1656(01)00407-2)
R. Gupta, P. Gigras, H. Mohapatra, V.K. Goswami, B. Chauhan, Process Biochem. 38 (2003) 1599 (https://doi.org/10.1016/S0032-9592(03)00053-0)
M. Karimi, D. Biria, Chemosphere. 152 (2016) 166 (https://doi.org/10.1016/j.chemosphere.2016.02.120)
P. Arunkumar, M. Thanalakshmi, P. Kumar, K. Premkumar, Colloids Surf. B Biointerfaces. 103 (2013) 517 (https://doi.org/10.1016/j.colsurfb.2012.10.051)
D. Mehta, T. Satyanarayana, Front. Microbiol. 7 (2016) 1129 (https://doi.org/10.3389/fmicb.2016.01129)
T. Panneerselvam, S. Elavarasi, Int. J. Curr. Microbiol. Appl. Sci. 4 (2015), 543 (https://www.ijcmas.com/vol-4-2/T.%20Panneerselvam%20and%20S.%20Elavarasi.pdf)
M. Schallmey, A. Singh, O.P. Ward, Can. J. Microbiol. 50 (2004) 1 (https://doi.org/10.1139/w03-076)
A. Deljou, I. Arezi, T. Period. Biol. 118 (2016) 405 (https://doi.org/10.18054/pb.v118i4.3737)
D. C. Sharma, Satyanarayana, Bioresour. Technol. 97 (2006) 727 (https://doi.org/10.1016/j.biortech.2005.04.012)
C. A. Dunlap, S. J. Kim, S. W. Kwon, A. Rooney, Int. J. Syst. Evol. Microbiol. 65 (2015) 2104. https://doi.org/10.1099/ijs.0.000226
P. Bernfeld, Amylases α and β. Methods in Enzymology. S. P. Colobick, N. O. Kalpan Ed., 1955, 1, 149 (http://dx.doi.org/10.1016/0076-6879(55)01021-5)
O. H. Lowry, N. J. Rosebrough, A. L. Farr, R. J. Randall, J. Biol. Chem. 193 (1951) 265 (http://www.jbc.org/content/193/1/265.long)
R.P. Van Hille, L. Bromfield, S. Botha, G. Jones, A. W. Van Zyl, S. T. Harrison. Adv. Mater. Res. 71 (2009) 413 (https://doi.org/10.4028/www.scientific.net/AMR.71-73.413)
S. Suman, K. Ramesh, Pharm. Sci. & Res. 2 (2010) 149 (https://www.jpsr.pharmainfo.in/Documents/Volumes/Vol2Issue3/jpsr02031002.pdf)
K. Das, R. Doley, A.K. Mukherjee, Biotechnol. Appl. Biochem. 40 (2004) 291 (https://doi.org/10.1042/BA20040034)
K. R. Jetendra, A. K. Mukherjee, Biochem. Eng. J. 77 (2013) 220 (https://doi.org/10.1016/j.bej.2013.06.012)
S. Afrisham, A. Badoei-Dalfard, A. Namaki-Shoushtari, Z. Karami, J. Mol. Catal. B Enzym. 132 (2016) 98 (https://doi.org/10.1016/j.molcatb.2016.07.002)
R. Lifshitz, A. Levitzki, Biochemistry. 15 (1976) 1987 (https://www.ncbi.nlm.nih.gov/pubmed/817737)
R. Vaikundamoorthy, R. Rajendran, A. Selvaraju, K. Moorthy, S. Perumal, Bioorg. Chem. 77 (2018) 494 (https://doi.org/10.1016/j.bioorg.2018.02.014)
S. De Cordt, K. Vanhoof, J. Hu, G. Maesmans, M. Hendrickx, P.Tobback, Biotechnol. Bioeng. 40 (1992) 396 (https://doi.org/10.1002/bit.260400309)
N. Bozic, J. Ruiz, J. Lopez-Santin, Z. Vujcic, J. Serb. Chem. Soc. 76 (2011) 965 (https://doi.org/10.2298/JSC101010098B)
Z. Li, L. Su, X. Duan, D. Wu, J. Wu, BioMed Research International. 2017:5479762. https://doi.org/10.1155/2017/5479762.
A. Hammami, N. Fakhfakh, O. Abdelhedi, M. Nasri, A. Bayoudh, Int. J. Biol. Macromol. 108 (2018) 56. https://doi.org/10.1016/j.ijbiomac.2017.11.148
A. A. Simair, A. S. Qureshi, I. Khushk, C. H. Ali, S. Lashari, M. A. Bhutto, G. S. Mangrio, C. Lu, Biomed. Res. Int. 2017 (https://doi.org/10.1155/2017/9173040)
J. K. Roy, S. K. Rai, A. K. Mukherjee, Int. J. Biol. Macromol. 50 (2012) 219 (https://doi.org/10.1016/j.ijbiomac.2011.10.026)
O. Kirk, T.V. Borchert, C.C. Fuglsang, Curr. Opin. Biotechnol. 13 (2002) 345-51. (https://doi.org/doi.org/10.1016/S0958-1669(02)00328-2)
A. Burhan, Bioresour. Technol. 99 (2008) 3071 (https://doi.org/10.1016/j.biortech.2007.06.019)
S. Murakami, H. Nishimoto, Y. Toyama, E. Shimamoto, S. Takenaka, J. Kaulpiboon, M. Prousoontorn, T. Limpaseni, P. Pongsawasdi, K. Aoki, Biosci. Biotechnol. Biochem. 71 (2007) 2393-401 (https://doi.org/10.1271/bbb.60666)
B. Oyeleke, S. H. Auta, E. C. Egwim, Niger State J. Microbiol. Antimicrob. 2 (2010), 88. (https://academicjournals.org/article/article1380022186_Oyeleke%20et%20al2.pdf)
A. Sharma, T. Satyanarayana, Extremophiles 16 (2012) 515. (https://doi.org/10.1007/s10529-010-0322-9)
Z. Konsoula, M. Liakopoulou-Kyriakides, Biores. Technol. 98 (2007) 150-157 (https://doi.org/10.1016/j.biortech.2005.11.001)
G. D. Haki, S. K. Rakshit, Biores. Technol. 89 (2003) 17-34 (https://doi.org/10.1016/S0960-8524(03)00033-6)
T. Satyanarayana, D. Mehta, Thermophilic microbes in environmental and industrial biotechnology: Biotechnology of thermophiles, Springer Science+Business Media, Dordrecht, 2013 (https://doi.org/10.1007/978-94-007-5899-5)
T. F. A. Abu, V. N. Enujiugha, D. M. Sanni, O. S. Bamidele, Int. J. Life Sc. Bt. & Pharm. Res. 3 (2014) 1
A. Sundarram, T. P. K. Murthy, J. App.& Env. Microbiol. 2 (2014) 166 (https://doi.org/10.12691/jaem-2-4-10)
J. K. Roy, A. K. Mukherjee, Biochem. Eng. J. 77 (2013) 220. https://doi.org/10.1016/j.bej.2013.06.012
S. Keharom, R. Mahachai, S. Chanthai, Int. Food Res. J. 23 (2016) 10 http://www.ifrj.upm.edu.my/23%20(01)%202016/(2).pdf
P.Y. Stergiou, A. Foukis, L. Theodorou, M. Papagianni, E. Papamichael, Braz. Arch. Biol. Technol. 57 (2014) 421 http://dx.doi.org/10.1590/S1516-8913201401485
V. P. Zambare, Emir. J. Food Agric. 23 (2011) 37 (http://ejfa.info)
S. R.Mustafa, A. Husaini, C. N. Hipolito, H. Hussain, N. Suhaili, H. A. Roslan, Braz. Arch. Biol. Technol. 59 (2016) e16150632 (http://dx.doi.org/10.1590/1678-4324-2016150632)
D. Gangadharan, S. Sivaramakrishnan, K. M. Nampoothiri, R. K. Sukumaran, A. Pandey. Bioresour. Technol. 99 (2008) 4597. (http://dx.doi.org10.1016/j.biortech.2007.07.028)