Optimization of the thermostable alkaline and Ca-dependent alpha-amylase production from Bacillus paralicheniformis by statistical modeling

Main Article Content

Fatma Matpan Bekler
Seçil Yalaz
Reyhan Gül Güven
Kemal Güven

Abstract

A novel amylolytic enzyme producing thermoalkaliphilic bacterium, the source of industrially used enzymes was isolated. Isolated strain was identified by morphological, physio-biochemical tests and the 16S rRNA gene sequence ana­lysis. The optimal conditions of enzyme activity were determined. For higher alpha-amylase production, the variables such as yeast extract, starch, CaCl2, (NH4)2SO4, NaCl and MgSO4 in the a-amylase production medium, the tem­perature and pH were screened by Plackett–Burman design and opti­mised using response surface methodology (RSM). The optimal conditions were found to be 0.15 g/L for starch, 0.15 mg/L for CaCl2 and 60 °C for tempe­rature. By using RSM model, amylase production increase was achieved seven­fold. It is showed that this method can be utilised to optimize alpha-amylase pro­duction in athermophilic bacteria such as Bacillus paralicheniformis.

Downloads

Metrics

PDF views
335
Nov 10 '19Nov 13 '19Nov 16 '19Nov 19 '19Nov 22 '19Nov 25 '19Nov 28 '19Dec 01 '19Dec 04 '19Dec 07 '193.0
| |

Article Details

How to Cite
[1]
F. Matpan Bekler, S. Yalaz, R. Gül Güven, and K. Güven, “Optimization of the thermostable alkaline and Ca-dependent alpha-amylase production from Bacillus paralicheniformis by statistical modeling”, J. Serb. Chem. Soc., vol. 84, no. 10, pp. 1093–1104, Nov. 2019.
Section
Biochemistry & Biotechnology

References

S. Sivaramakrishnan, D. Gangadharan, K. N. Madhavan, A. Pandey, Food Technol. Biotechnol. 44 (2006) 269 (http://www.ftb.com.hr/images/pdfarticles/2006/April-June/44-269.pdf)

M. J. E. C. Van der Maarel, B. Van der Veen, J. C. M. Uitdehaag, H. Leemhuis, L. Dijk¬huizen, J. Biotechnol. 94 (2002) 137 (https://doi.org/10.1016/S0168-1656(01)00407-2)

R. Gupta, P. Gigras, H. Mohapatra, V.K. Goswami, B. Chauhan, Process Biochem. 38 (2003) 1599 (https://doi.org/10.1016/S0032-9592(03)00053-0)

M. Karimi, D. Biria, Chemosphere. 152 (2016) 166 (https://doi.org/10.1016/j.chemosphere.2016.02.120)

P. Arunkumar, M. Thanalakshmi, P. Kumar, K. Premkumar, Colloids Surf. B Biointerfaces. 103 (2013) 517 (https://doi.org/10.1016/j.colsurfb.2012.10.051)

D. Mehta, T. Satyanarayana, Front. Microbiol. 7 (2016) 1129 (https://doi.org/10.3389/fmicb.2016.01129)

T. Panneerselvam, S. Elavarasi, Int. J. Curr. Microbiol. Appl. Sci. 4 (2015), 543 (https://www.ijcmas.com/vol-4-2/T.%20Panneerselvam%20and%20S.%20Elavarasi.pdf)

M. Schallmey, A. Singh, O.P. Ward, Can. J. Microbiol. 50 (2004) 1 (https://doi.org/10.1139/w03-076)

A. Deljou, I. Arezi, T. Period. Biol. 118 (2016) 405 (https://doi.org/10.18054/pb.v118i4.3737)

D. C. Sharma, Satyanarayana, Bioresour. Technol. 97 (2006) 727 (https://doi.org/10.1016/j.biortech.2005.04.012)

C. A. Dunlap, S. J. Kim, S. W. Kwon, A. Rooney, Int. J. Syst. Evol. Microbiol. 65 (2015) 2104. https://doi.org/10.1099/ijs.0.000226

P. Bernfeld, Amylases α and β. Methods in Enzymology. S. P. Colobick, N. O. Kalpan Ed., 1955, 1, 149 (http://dx.doi.org/10.1016/0076-6879(55)01021-5)

O. H. Lowry, N. J. Rosebrough, A. L. Farr, R. J. Randall, J. Biol. Chem. 193 (1951) 265 (http://www.jbc.org/content/193/1/265.long)

R.P. Van Hille, L. Bromfield, S. Botha, G. Jones, A. W. Van Zyl, S. T. Harrison. Adv. Mater. Res. 71 (2009) 413 (https://doi.org/10.4028/www.scientific.net/AMR.71-73.413)

S. Suman, K. Ramesh, Pharm. Sci. & Res. 2 (2010) 149 (https://www.jpsr.pharmainfo.in/Documents/Volumes/Vol2Issue3/jpsr02031002.pdf)

K. Das, R. Doley, A.K. Mukherjee, Biotechnol. Appl. Biochem. 40 (2004) 291 (https://doi.org/10.1042/BA20040034)

K. R. Jetendra, A. K. Mukherjee, Biochem. Eng. J. 77 (2013) 220 (https://doi.org/10.1016/j.bej.2013.06.012)

S. Afrisham, A. Badoei-Dalfard, A. Namaki-Shoushtari, Z. Karami, J. Mol. Catal. B Enzym. 132 (2016) 98 (https://doi.org/10.1016/j.molcatb.2016.07.002)

R. Lifshitz, A. Levitzki, Biochemistry. 15 (1976) 1987 (https://www.ncbi.nlm.nih.gov/pubmed/817737)

R. Vaikundamoorthy, R. Rajendran, A. Selvaraju, K. Moorthy, S. Perumal, Bioorg. Chem. 77 (2018) 494 (https://doi.org/10.1016/j.bioorg.2018.02.014)

S. De Cordt, K. Vanhoof, J. Hu, G. Maesmans, M. Hendrickx, P.Tobback, Biotechnol. Bioeng. 40 (1992) 396 (https://doi.org/10.1002/bit.260400309)

N. Bozic, J. Ruiz, J. Lopez-Santin, Z. Vujcic, J. Serb. Chem. Soc. 76 (2011) 965 (https://doi.org/10.2298/JSC101010098B)

Z. Li, L. Su, X. Duan, D. Wu, J. Wu, BioMed Research International. 2017:5479762. https://doi.org/10.1155/2017/5479762.

A. Hammami, N. Fakhfakh, O. Abdelhedi, M. Nasri, A. Bayoudh, Int. J. Biol. Macromol. 108 (2018) 56. https://doi.org/10.1016/j.ijbiomac.2017.11.148

A. A. Simair, A. S. Qureshi, I. Khushk, C. H. Ali, S. Lashari, M. A. Bhutto, G. S. Mangrio, C. Lu, Biomed. Res. Int. 2017 (https://doi.org/10.1155/2017/9173040)

J. K. Roy, S. K. Rai, A. K. Mukherjee, Int. J. Biol. Macromol. 50 (2012) 219 (https://doi.org/10.1016/j.ijbiomac.2011.10.026)

O. Kirk, T.V. Borchert, C.C. Fuglsang, Curr. Opin. Biotechnol. 13 (2002) 345-51. (https://doi.org/doi.org/10.1016/S0958-1669(02)00328-2)

A. Burhan, Bioresour. Technol. 99 (2008) 3071 (https://doi.org/10.1016/j.biortech.2007.06.019)

S. Murakami, H. Nishimoto, Y. Toyama, E. Shimamoto, S. Takenaka, J. Kaulpiboon, M. Prousoontorn, T. Limpaseni, P. Pongsawasdi, K. Aoki, Biosci. Biotechnol. Biochem. 71 (2007) 2393-401 (https://doi.org/10.1271/bbb.60666)

B. Oyeleke, S. H. Auta, E. C. Egwim, Niger State J. Microbiol. Antimicrob. 2 (2010), 88. (https://academicjournals.org/article/article1380022186_Oyeleke%20et%20al2.pdf)

A. Sharma, T. Satyanarayana, Extremophiles 16 (2012) 515. (https://doi.org/10.1007/s10529-010-0322-9)

Z. Konsoula, M. Liakopoulou-Kyriakides, Biores. Technol. 98 (2007) 150-157 (https://doi.org/10.1016/j.biortech.2005.11.001)

G. D. Haki, S. K. Rakshit, Biores. Technol. 89 (2003) 17-34 (https://doi.org/10.1016/S0960-8524(03)00033-6)

T. Satyanarayana, D. Mehta, Thermophilic microbes in environmental and industrial biotechnology: Biotechnology of thermophiles, Springer Science+Business Media, Dordrecht, 2013 (https://doi.org/10.1007/978-94-007-5899-5)

T. F. A. Abu, V. N. Enujiugha, D. M. Sanni, O. S. Bamidele, Int. J. Life Sc. Bt. & Pharm. Res. 3 (2014) 1

A. Sundarram, T. P. K. Murthy, J. App.& Env. Microbiol. 2 (2014) 166 (https://doi.org/10.12691/jaem-2-4-10)

J. K. Roy, A. K. Mukherjee, Biochem. Eng. J. 77 (2013) 220. https://doi.org/10.1016/j.bej.2013.06.012

S. Keharom, R. Mahachai, S. Chanthai, Int. Food Res. J. 23 (2016) 10 http://www.ifrj.upm.edu.my/23%20(01)%202016/(2).pdf

P.Y. Stergiou, A. Foukis, L. Theodorou, M. Papagianni, E. Papamichael, Braz. Arch. Biol. Technol. 57 (2014) 421 http://dx.doi.org/10.1590/S1516-8913201401485

V. P. Zambare, Emir. J. Food Agric. 23 (2011) 37 (http://ejfa.info)

S. R.Mustafa, A. Husaini, C. N. Hipolito, H. Hussain, N. Suhaili, H. A. Roslan, Braz. Arch. Biol. Technol. 59 (2016) e16150632 (http://dx.doi.org/10.1590/1678-4324-2016150632)

D. Gangadharan, S. Sivaramakrishnan, K. M. Nampoothiri, R. K. Sukumaran, A. Pandey. Bioresour. Technol. 99 (2008) 4597. (http://dx.doi.org10.1016/j.biortech.2007.07.028)