Optimization of the thermostable alkaline and Ca-dependent alpha-amylase production from Bacillus paralicheniformis by statistical modeling

Fatma Matpan Bekler, Seçil Yalaz, Reyhan Gül Güven, Kemal Güven

Abstract


A novel amylolytic enzyme producing thermoalkaliphilic bacterium, the source of industrially used enzymes was isolated. Isolated strain was identified by morphological, physio-biochemical tests and the 16S rRNA gene sequence ana­lysis. The optimal conditions of enzyme activity were determined. For higher alpha-amylase production, the variables such as yeast extract, starch, CaCl2, (NH4)2SO4, NaCl and MgSO4 in the a-amylase production medium, the tem­perature and pH were screened by Plackett–Burman design and opti­mised using response surface methodology (RSM). The optimal conditions were found to be 0.15 g/L for starch, 0.15 mg/L for CaCl2 and 60 °C for tempe­rature. By using RSM model, amylase production increase was achieved seven­fold. It is showed that this method can be utilised to optimize alpha-amylase pro­duction in athermophilic bacteria such as Bacillus paralicheniformis.


Keywords


alpha-amylase; Bacillus paralicheniformis; optimization; response sur¬face methodology

Full Text:

PDF (2,597 kB)

References


S. Sivaramakrishnan, D. Gangadharan, K. N. Madhavan, A. Pandey, Food Technol. Biotechnol. 44 (2006) 269 (http://www.ftb.com.hr/images/pdfarticles/2006/April-June/44-269.pdf)

M. J. E. C. Van der Maarel, B. Van der Veen, J. C. M. Uitdehaag, H. Leemhuis, L. Dijk¬huizen, J. Biotechnol. 94 (2002) 137 (https://doi.org/10.1016/S0168-1656(01)00407-2)

R. Gupta, P. Gigras, H. Mohapatra, V.K. Goswami, B. Chauhan, Process Biochem. 38 (2003) 1599 (https://doi.org/10.1016/S0032-9592(03)00053-0)

M. Karimi, D. Biria, Chemosphere. 152 (2016) 166 (https://doi.org/10.1016/j.chemosphere.2016.02.120)

P. Arunkumar, M. Thanalakshmi, P. Kumar, K. Premkumar, Colloids Surf. B Biointerfaces. 103 (2013) 517 (https://doi.org/10.1016/j.colsurfb.2012.10.051)

D. Mehta, T. Satyanarayana, Front. Microbiol. 7 (2016) 1129 (https://doi.org/10.3389/fmicb.2016.01129)

T. Panneerselvam, S. Elavarasi, Int. J. Curr. Microbiol. Appl. Sci. 4 (2015), 543 (https://www.ijcmas.com/vol-4-2/T.%20Panneerselvam%20and%20S.%20Elavarasi.pdf)

M. Schallmey, A. Singh, O.P. Ward, Can. J. Microbiol. 50 (2004) 1 (https://doi.org/10.1139/w03-076)

A. Deljou, I. Arezi, T. Period. Biol. 118 (2016) 405 (https://doi.org/10.18054/pb.v118i4.3737)

D. C. Sharma, Satyanarayana, Bioresour. Technol. 97 (2006) 727 (https://doi.org/10.1016/j.biortech.2005.04.012)

C. A. Dunlap, S. J. Kim, S. W. Kwon, A. Rooney, Int. J. Syst. Evol. Microbiol. 65 (2015) 2104. https://doi.org/10.1099/ijs.0.000226

P. Bernfeld, Amylases α and β. Methods in Enzymology. S. P. Colobick, N. O. Kalpan Ed., 1955, 1, 149 (http://dx.doi.org/10.1016/0076-6879(55)01021-5)

O. H. Lowry, N. J. Rosebrough, A. L. Farr, R. J. Randall, J. Biol. Chem. 193 (1951) 265 (http://www.jbc.org/content/193/1/265.long)

R.P. Van Hille, L. Bromfield, S. Botha, G. Jones, A. W. Van Zyl, S. T. Harrison. Adv. Mater. Res. 71 (2009) 413 (https://doi.org/10.4028/www.scientific.net/AMR.71-73.413)

S. Suman, K. Ramesh, Pharm. Sci. & Res. 2 (2010) 149 (https://www.jpsr.pharmainfo.in/Documents/Volumes/Vol2Issue3/jpsr02031002.pdf)

K. Das, R. Doley, A.K. Mukherjee, Biotechnol. Appl. Biochem. 40 (2004) 291 (https://doi.org/10.1042/BA20040034)

K. R. Jetendra, A. K. Mukherjee, Biochem. Eng. J. 77 (2013) 220 (https://doi.org/10.1016/j.bej.2013.06.012)

S. Afrisham, A. Badoei-Dalfard, A. Namaki-Shoushtari, Z. Karami, J. Mol. Catal. B Enzym. 132 (2016) 98 (https://doi.org/10.1016/j.molcatb.2016.07.002)

R. Lifshitz, A. Levitzki, Biochemistry. 15 (1976) 1987 (https://www.ncbi.nlm.nih.gov/pubmed/817737)

R. Vaikundamoorthy, R. Rajendran, A. Selvaraju, K. Moorthy, S. Perumal, Bioorg. Chem. 77 (2018) 494 (https://doi.org/10.1016/j.bioorg.2018.02.014)

S. De Cordt, K. Vanhoof, J. Hu, G. Maesmans, M. Hendrickx, P.Tobback, Biotechnol. Bioeng. 40 (1992) 396 (https://doi.org/10.1002/bit.260400309)

N. Bozic, J. Ruiz, J. Lopez-Santin, Z. Vujcic, J. Serb. Chem. Soc. 76 (2011) 965 (https://doi.org/10.2298/JSC101010098B)

Z. Li, L. Su, X. Duan, D. Wu, J. Wu, BioMed Research International. 2017:5479762. https://doi.org/10.1155/2017/5479762.

A. Hammami, N. Fakhfakh, O. Abdelhedi, M. Nasri, A. Bayoudh, Int. J. Biol. Macromol. 108 (2018) 56. https://doi.org/10.1016/j.ijbiomac.2017.11.148

A. A. Simair, A. S. Qureshi, I. Khushk, C. H. Ali, S. Lashari, M. A. Bhutto, G. S. Mangrio, C. Lu, Biomed. Res. Int. 2017 (https://doi.org/10.1155/2017/9173040)

J. K. Roy, S. K. Rai, A. K. Mukherjee, Int. J. Biol. Macromol. 50 (2012) 219 (https://doi.org/10.1016/j.ijbiomac.2011.10.026)

O. Kirk, T.V. Borchert, C.C. Fuglsang, Curr. Opin. Biotechnol. 13 (2002) 345-51. (https://doi.org/doi.org/10.1016/S0958-1669(02)00328-2)

A. Burhan, Bioresour. Technol. 99 (2008) 3071 (https://doi.org/10.1016/j.biortech.2007.06.019)

S. Murakami, H. Nishimoto, Y. Toyama, E. Shimamoto, S. Takenaka, J. Kaulpiboon, M. Prousoontorn, T. Limpaseni, P. Pongsawasdi, K. Aoki, Biosci. Biotechnol. Biochem. 71 (2007) 2393-401 (https://doi.org/10.1271/bbb.60666)

B. Oyeleke, S. H. Auta, E. C. Egwim, Niger State J. Microbiol. Antimicrob. 2 (2010), 88. (https://academicjournals.org/article/article1380022186_Oyeleke%20et%20al2.pdf)

A. Sharma, T. Satyanarayana, Extremophiles 16 (2012) 515. (https://doi.org/10.1007/s10529-010-0322-9)

Z. Konsoula, M. Liakopoulou-Kyriakides, Biores. Technol. 98 (2007) 150-157 (https://doi.org/10.1016/j.biortech.2005.11.001)

G. D. Haki, S. K. Rakshit, Biores. Technol. 89 (2003) 17-34 (https://doi.org/10.1016/S0960-8524(03)00033-6)

T. Satyanarayana, D. Mehta, Thermophilic microbes in environmental and industrial biotechnology: Biotechnology of thermophiles, Springer Science+Business Media, Dordrecht, 2013 (https://doi.org/10.1007/978-94-007-5899-5)

T. F. A. Abu, V. N. Enujiugha, D. M. Sanni, O. S. Bamidele, Int. J. Life Sc. Bt. & Pharm. Res. 3 (2014) 1

A. Sundarram, T. P. K. Murthy, J. App.& Env. Microbiol. 2 (2014) 166 (https://doi.org/10.12691/jaem-2-4-10)

J. K. Roy, A. K. Mukherjee, Biochem. Eng. J. 77 (2013) 220. https://doi.org/10.1016/j.bej.2013.06.012

S. Keharom, R. Mahachai, S. Chanthai, Int. Food Res. J. 23 (2016) 10 http://www.ifrj.upm.edu.my/23%20(01)%202016/(2).pdf

P.Y. Stergiou, A. Foukis, L. Theodorou, M. Papagianni, E. Papamichael, Braz. Arch. Biol. Technol. 57 (2014) 421 http://dx.doi.org/10.1590/S1516-8913201401485

V. P. Zambare, Emir. J. Food Agric. 23 (2011) 37 (http://ejfa.info)

S. R.Mustafa, A. Husaini, C. N. Hipolito, H. Hussain, N. Suhaili, H. A. Roslan, Braz. Arch. Biol. Technol. 59 (2016) e16150632 (http://dx.doi.org/10.1590/1678-4324-2016150632)

D. Gangadharan, S. Sivaramakrishnan, K. M. Nampoothiri, R. K. Sukumaran, A. Pandey. Bioresour. Technol. 99 (2008) 4597. (http://dx.doi.org10.1016/j.biortech.2007.07.028)




DOI: https://doi.org/10.2298/JSC190227021B

Copyright (c) 2019 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.828 (140 of 172 journals)
5 Year Impact Factor 0.917 (140 of 172 journals)