Investigation of structural, dynamic and dielectric properties of an aqueous potassium fluoride system at various concentrations by molecular dynamics simulations Scientific paper
Main Article Content
Abstract
Potassium-ion-based batteries have emerged as promising alternatives to traditional lithium-ion batteries for energy storage systems due to their affordability, wide accessibility and comparable chemical characteristics to lithium. This study employs molecular dynamics simulations to explore the physical phenomena of potassium fluoride in aqueous solutions. The interatomic interactions were defined using the OPLS-AA force field, while the SPC/E water model and ions were represented as charged Lennard–Jones particles. The simulations were conducted across concentrations ranging from 0.1 to 1.0 mol kg-1. The insights derived from this investigation provide valuable understanding into the behaviour of KF electrolytes and their potential utility in energy storage systems. A comprehensive comprehension of the impact of KF electrolyte concentration on structural, dynamic and dielectric properties is pivotal for the design and optimization of potassium-ion batteries, as well as other electrochemical devices leveraging KF-based electrolytes. This research significantly contributes to the ongoing endeavours aimed at developing efficient and economically viable energy storage solutions that transcend the confines of traditional lithium-ion batteries.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
A. Tomaszewska, Z. Chu, X. Feng, S. O’Kane, X. Liu, J. Chen, C. Ji, E. Endler, R. Li, L. Liu, Y. Li, S. Zheng, S. Vetterlein, M. Gao, J. Du, M. Parkes, M. Ouyang, M. Marinescu, G. Offer, B. Wu, eTransportation 1 (2019) 100011 (https://doi.org/10.1016/j.etran.2019.100011)
Y. Kim, W. M. Seong, A. Manthiram, Energy Storage Mater. 34 (2021) 250 (https://doi.org/10.1016/j.ensm.2020.09.020)
K. Beltrop, S. Beuker, A. Heckmann, M. Winter, T. Placke, Energy Environ. Sci. 10 (2017) 2090 (https://doi.org/10.1039/C7EE01535F)
X. Lin, J. Huang, H. Tan, J. Huang, B. Zhang, Energy Storage Mater. 16 (2019) 97 (https://doi.org/10.1016/j.ensm.2018.04.026)
H. Xu, H. Chen, C. Gao, ACS Mater. Lett. 3 (2021) 1221 (https://doi.org/10.1021/acsmaterialslett.1c00280)
R. Rajagopalan, Y. Tang, X. Ji, C. Jia, H. Wang, Adv. Funct. Mater. 30 (2020) 1909486 (https://doi.org/10.1002/adfm.201909486)
J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Adv. Funct. Mater. 28 (2018) 1802938 (https://doi.org/10.1002/adfm.201802938)
Y. Mekonnen, A. Sundararajan, A. I. Sarwat, in Proceedings of SoutheastCon 2016, 2016, pp. 1–6 (https://doi.org/10.1109/SECON.2016.7506639)
X. Zeng, M. Li, D. Abd El‐Hady, W. Alshitari, A. S. Al‐Bogami, J. Lu, K. Amine, Adv. Energy Mater. 9 (2019) 1900161 (https://doi.org/10.1002/aenm.201900161)
H. Vikström, S. Davidsson, M. Höök, Appl. Energy 110 (2013) 252 (https://doi.org/10.1016/j.apenergy.2013.04.005)
S. Ziemann, D. B. Müller, L. Schebek, M. Weil, Resour. Conserv. Recycl. 133 (2018) 76 (https://doi.org/10.1016/j.resconrec.2018.01.031)
R. T. Nguyen, R. G. Eggert, M. H. Severson, C. G. Anderson, Resour. Conserv. Recycl. 167 (2021) 105198 (https://doi.org/10.1016/j.resconrec.2020.105198)
G. Zubi, R. Dufo-López, M. Carvalho, G. Pasaoglu, Renew. Sustain. Energy Rev. 89 (2018) 292 (https://doi.org/10.1016/j.rser.2018.03.002)
J. Zhao, X. Zou, Y. Zhu, Y. Xu, C. Wang, Adv. Funct. Mater. 26 (2016) 8103 (https://doi.org/10.1002/adfm.201602248)
Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao, M. Wu, Y. Lei, Nat. Commun. 9 (2018) 1720 (https://doi.org/10.1038/s41467-018-04190-z)
S. Zhang, Y. Liu, Q. Fan, C. Zhang, T. Zhou, K. Kalantar-Zadeh, Z. Guo, Energy Environ. Sci. 14 (2021) 4177 (https://doi.org/10.1039/D1EE00531F)
L. Jiang, Y. Lu, C. Zhao, L. Liu, J. Zhang, Q. Zhang, X. Shen, J. Zhao, X. Yu, H. Li, X. Huang, L. Chen, Y.-S. Hu, Nat. Energy 4 (2019) 495 (https://doi.org/10.1038/s41560-019-0388-0)
K. Kubota, M. Dahbi, T. Hosaka, S. Kumakura, S. Komaba, Chem. Rec. 18 (2018) 459 (https://doi.org/10.1002/tcr.201700057)
J. C. Pramudita, D. Sehrawat, D. Goonetilleke, N. Sharma, Adv. Energy Mater. 7 (2017) 1602911 (https://doi.org/10.1002/aenm.201602911)
Z. Jian, Y. Liang, I. A. Rodríguez-Pérez, Y. Yao, X. Ji, Electrochem. Commun. 71 (2016) 5 (https://doi.org/10.1016/j.elecom.2016.07.011)
M. Sajjad, F. Cheng, W. Lu, RSC Adv. 11 (2021) 25450 (https://doi.org/10.1039/D1RA02445K)
X. Lu, M. E. Bowden, V. L. Sprenkle, J. Liu, Adv. Mater. 27 (2015) 5915 (https://doi.org/10.1002/adma.201502343)
S. Liu, L. Kang, J. Henzie, J. Zhang, J. Ha, M. A. Amin, M. S. A. Hossain, S. C. Jun, Y. Yamauchi, ACS Nano 15 (2021) 18931 (https://doi.org/10.1021/acsnano.1c08428)
Y.-S. Xu, S.-Y. Duan, Y.-G. Sun, D.-S. Bin, X.-S. Tao, D. Zhang, Y. Liu, A.-M. Cao, L.-
-J. Wan, J. Mater. Chem., A 7 (2019) 4334 (https://doi.org/10.1039/C8TA10953B)
Y. Wu, Y. Sun, Y. Tong, X. Liu, J. Zheng, D. Han, H. Li, L. Niu, Energy Storage Mater. 41 (2021) 108 (https://doi.org/10.1016/j.ensm.2021.05.045)
A. Errougui, M. Talbi, M. Kouali, E3S Web Confer. 297 (2021) 01009 (https://doi.org/10.1051/e3sconf/202129701009)
T. Noël, Y. Cao, G. Laudadio, Acc. Chem. Res. 52 (2019) 2858 (https://doi.org/10.1021/acs.accounts.9b00412)
A. Errougui, M. Talbi, M. El Kouali, Egypt. J. Chem. 65 (2022) 1 (https://doi.org/10.21608/ejchem.2021.67302.3453)
A. Errougui, A. Lahmidi, S. Chtita, M. El Kouali, M. Talbi, J. Solut. Chem. 52 (2023) 176 (https://doi.org/10.1007/s10953-022-01222-7)
G. A. Kaminski, R. A. Friesner, J. Tirado-Rives, W. L. Jorgensen, J. Phys. Chem., B 105 (2001) 6474 (https://doi.org/10.1021/jp003919d)
M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E. Lindahl, SoftwareX 1–2 (2015) 19 (https://doi.org/10.1016/j.softx.2015.06.001)
B. Hess, C. Kutzner, D. Van Der Spoel, E. Lindahl, J. Chem. Theory Comput. 4 (2008) 435 (https://doi.org/10.1021/ct700301q)
M. Parrinello, A. Rahman, J. Appl. Phys. 52 (1981) 7182 (https://doi.org/10.1063/1.328693)
S. Nosé, Mol. Phys. 52 (1984) 255 (https://doi.org/10.1080/00268978400101201)
W. G. Hoover, Phys. Rev., A 31 (1985) 1695 (https://doi.org/10.1103/PhysRevA.31.1695)
H. J. C. Berendsen, J. R. Grigera, T. P. Straatsma, J. Phys. Chem. 91 (1987) 6269 (https://doi.org/10.1021/j100308a038)
S. I. Sandler, & J. K. Wheatley, Chem. Phys. Lett. 10 (1971) 375 (https://doi.org/10.1016/0009-2614(71)80313-5)
C. J. Fennell, A. Bizjak, V. Vlachy, K. A. Dill, J. Phys. Chem., B 113 (2009) 6782 (https://doi.org/10.1021/jp809782z)
J. Zielkiewicz, J. Chem. Phys. 123 (2005) 104501 (https://doi.org/10.1063/1.2018637)
S. Reiser, S. Deublein, J. Vrabec, H. Hasse, J. Chem. Phys. 140 (2014) 044504 (https://doi.org/10.1063/1.4858392)
Experimental Determination of Partial and Environmental Structure Functions in Non-crystalline Systems — Fundamental Aspects. in Anomalous X-Ray Scattering for Material Characterization: Atomic-Scale Structure Determination, Y. Waseda, Ed., Springer, Berlin, 2002, pp. 9–20 (https://doi.org/10.1007/3-540-46008-X_2)
M. Guo, W. Wang, H. Lu, Fluid Phase Equilib. 60 (1990) 37 (https://doi.org/10.1016/0378-3812(90)85041-8)
X. Zhang, X. Liu, M. He, Y. Zhang, Y. Sun, X. Lu, Fluid Phase Equilib. 518 (2020) 112625 (https://doi.org/10.1016/j.fluid.2020.112625)
S. Deublein, J. Vrabec, H. Hasse, J. Chem. Phys. 136 (2012) 084501 (https://doi.org/10.1063/1.3687238)
Y. Laudernet, T. Cartailler, P. Turq, M. Ferrario, J. Phys. Chem., B 107 (2003) 2354 (https://doi.org/10.1021/jp0223814)
D. W. McCall, D. C. Douglass, J. Phys. Chem. 69 (1965) 2001 (https://doi.org/10.1021/j100890a034)
F. E. Harris, C. T. O’Konski, J. Phys. Chem. 61 (1957) 310 (https://doi.org/10.1021/j150549a009).