In vitro anticancer studies of a small library of cyclic lipopeptides against the human cervix adenocarcinoma HeLa cells Scientific paper

Main Article Content

Ali N. Hmedat
https://orcid.org/0000-0003-4209-8598
Micjel C. Morejón
https://orcid.org/0000-0002-9359-1115
Daniel G. Rivera
Nebojša Đ. Pantelić
https://orcid.org/0000-0003-1843-9890
Ludger A. Wessjohann
https://orcid.org/0000-0003-2060-8235
Goran N. Kaluđerović
https://orcid.org/0000-0001-5168-1000

Abstract

Various cyclic lipopeptides (CLPs, 23 compounds) were tested for their antitumor potential against human cervix adenocarcinoma HeLa cells. From the fast screening (tested concentrations: 0.01 and 10 µM) compound 10 ((12S,6S,10S,13S)-6-((R)-sec-butyl)-7-(2-(dodecylamino)-2-oxoethyl)-13-iso­pro­pyl-82-nitro-2,5,12,15-tetraoxo-4,7,11,14-tetraaza-1(1,2)-pyrrolidina-8(1,4)-benz­enacyclopentadecaphane-10-carboxamide) was identified as active against HeLa cell line. The MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and CV (crystal violet) assays revealed at least five times higher cyto­toxic potential of 10 (IC50 = 12.3±1.8 µM, MTT; 9.4±1.5 µM; CV) in com­par­ison to control drug natural occurring CLP surfactin (IC50 = 64.9±0.8 µM, MTT; 76.2±1.6 µM; CV). The cell cycle analysis performed by DAPI (4',6-di­amidino-2-phenylindole) assay indicated the involvement of apoptosis in HeLa cell death upon treatment with 10, which was confirmed by apoptosis assay (annexin V/PI). Furthermore, during this process caspase activation could be detected (ApoStat assay, immunocytochemistry caspase-3 analysis). The flow cytometry analysis did not display induction of autophagy as a possible death mechanism in HeLa cells upon 10 treatment. The current findings could be used to design more effective CLPs based on 10 structure as potential anti­cancer agents.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
A. N. Hmedat, M. C. . Morejón, D. G. Rivera, N. Đ. Pantelić, L. A. Wessjohann, and G. N. Kaluđerović, “In vitro anticancer studies of a small library of cyclic lipopeptides against the human cervix adenocarcinoma HeLa cells: Scientific paper”, J. Serb. Chem. Soc., vol. 89, no. 4, pp. 471–484, Apr. 2024.
Section
Biochemistry & Biotechnology

Funding data

References

R. L. Siegel, K. D. Miller, N. S. Wagle, A. Jemal, Ca Cancer J. Clin. 73 (2023) 17 (https://doi.org/10.3322/caac.21763 )

M. Malvezzi, C. Santucci, P. Boffetta, G. Collatuzzo, F. Levi, C. La Vecchia, E. Negri, Ann. Oncol. 34 (2023) 410 (https://doi.org/10.1016/j.annonc.2023.01.010 )

M. Muscaritoli, J. Arends, P. Bachmann, V. Baracos, N. Barthelemy, H. Bertz, F. Bozzetti, E. Hütterer, E. Isenring, S. Kaasa, Clin. Nutr. 40 (2021) 2898 (https://doi.org/10.1016/j.clnu.2021.02.005 )

S. Liu, Q. Sun, X. Ren, J. Hematol. Oncol. 16 (2023) 38 (https://doi.org/10.1186/s13045-023-01430-8 )

S. L. Gupta, S. Basu, V. Soni, R. K. Jaiswal, Mol. Biol. Rep. 49 (2022) 9903 (https://doi.org/10.1007/s11033-022-07525-8 )

K. O’Brien, K. Ried, T. Binjemain, A. Sali, Cancers 14 (2022) 5933 (https://doi.org/10.3390/cancers14235933 )

Y. F. Mustafa, Appl. Nanosci. 13 (2023) 1907 (https://doi.org/10.1007/s13204-021-01872-x )

S. Motyka, K. Jafernik, H. Ekiert, J. Sharifi-Rad, D. Calina, B. Al-Omari, A. Szopa, W. C. Cho, Biomed. Pharmacother. 158 (2023) 114145 (https://doi.org/10.1016/j.biopha.2022.114145 )

Z. Breijyeh, R. Karaman, Antibiotics 12 (2023) 628 (https://doi.org/10.3390/antibiotics12030628 )

M. C. Morejón, A. Laub, G. N. Kaluđerović, A. R. Puentes, A. N. Hmedat, A. J. Otero-

-González, D. G. Rivera, L. A. Wessjohann, Org. Biomol. Chem. 15 (2017) 3628 (https://doi.org/10.1039/c7ob00459a )

S. Lai, Q. Zhang, L. Jin, Antibiotics 12 (2022) 42 (https://doi.org/10.3390/antibiotics12010042 )

S. Singh, R. A. Sequeira, P. Kumar, V. A. Ghadge, P. Vaghela, A. K. Mohanty, A. Ghosh, K. Prasad, P. B. Shinde, ACS Omega 7 (2022) 46646 (https://doi.org/10.1021/acsomega.2c05587 )

D. P. Fewer, J. Jokela, L. Heinilä, R. Aesoy, K. Sivonen, T. Galica, P. Hrouzek, L. Herfindal, Physiol. Plant. 173 (2021) 639 (https://doi.org/10.1111/ppl.13484 )

J. Steigenberger, Y. Verleysen, N. Geudens, A. Madder, J. C. Martins, H. Heerklotz, Biophys. J. 122 (2023) 950 (https://doi.org/10.1016/j.bpj.2022.07.033 )

C. Wan, X. Fan, Z. Lou, H. Wang, A. Olatunde, K. R. Rengasamy, Crit. Rev. Food Sci. Nutr. 62 (2022) 7976 (https://doi.org/10.1080/10408398.2021.1922355 )

A. Evidente, Int. J. Mol. Sci. 23 (2022) 12342 (https://doi.org/10.3390/ijms232012342 )

J. G. Tank, R. V. Pandya, Peptides 155 (2022) 170836 (https://doi.org/10.1016/j.peptides.2022.170836 )

A. Théatre, C. Cano-Prieto, M. Bartolini, Y. Laurin, M. Deleu, J. Niehren, T. Fida, S. Gerbinet, M. Alanjary, M. H. Medema, Front. Bioeng. Biotechnol. 9 (2021) 623701 (https://doi.org/10.3389/fbioe.2021.623701 )

A. Rosier, M. Pomerleau, P. B. Beauregard, D. A. Samac, H. P. Bais, Plants 12 (2023) 1007 (https://doi.org/10.3390/plants12051007 )

J.-F. Liu, S. M. Mbadinga, S.-Z. Yang, J.-D. Gu, B.-Z. Mu, Int. J. Mol. Sci. 16 (2015) 4814 (https://doi.org/10.3390/ijms16034814 )

Y.-S. Wu, S.-C. Ngai, B.-H. Goh, K.-G. Chan, L.-H. Lee, L.-H. Chuah, Front. Pharmacol. 8 (2017) 761 (https://doi.org/10.3389/fphar.2017.00761 )

T. T. T. Vo, Y. Wee, H. C. Cheng, C. Z. Wu, Y. L. Chen, V. P. Tuan, J. F. Liu, W. N. Lin, I. T. Lee, Oral Dis. 29 (2023) 528 (https://doi.org/10.1111/odi.13950 )

M. C. Morejón, New Multicomponent Strategies to Cyclic Lipopeptides, Universitäts-und Landesbibliothek Sachsen-Anhalt, Halle (Saale), 2018 (https://doi.org/10.1515/bd.2003.37.1.41 )

T. Krajnović, N. Đ. Pantelić, K. Wolf, T. Eichhorn, D. Maksimović-Ivanić, S. Mijatović, L. A. Wessjohann, G. N. Kaluđerović, Materials 15 (2022) 5028 (https://doi.org/10.3390/ma15145028 )

I. Morgan, L. A. Wessjohann, G. N. Kaluđerović, Cells 11 (2022) 168 (https://doi.org/10.3390/cells11010168)

S. B. Kntayya, M. D. Ibrahim, N. Mohd Ain, R. Iori, C. Ioannides, A. F. Abdull Razis, Nutrients 10 (2018) 718 (https://doi.org/10.3390/nu10060718 )

N. Ganesan, S. Ronsmans, P. Hoet, Heliyon 9 (2023) e19242 (https://doi.org/10.1016/j.heliyon.2023.e19242 )

N. Yusof, N. M. Yasin, R. Yousuf, A. A. Wahab, S. A. Aziz, Bangladesh J. Med. Sci. 21 (2022) 626 (https://doi.org/10.3329/bjms.v21i3.59577 )

I. Canga, P. Vita, A.I. Oliveira, M. Á. Castro, C. Pinho, Molecules 27 (2022) 4989 (https://doi.org/10.3390/molecules27154989 )

R. Gómez-Bombarelli, E. Calle, J. Casado, J. Org. Chem. 78 (2013) 6868 (https://doi.org/10.1021/jo400258w )

K. Liu, Y. Sun, M. Cao, J. Wang, J. R. Lu, H. Xu, Curr. Opin. Colloid Interface Sci. 45 (2020) 57 (https://doi.org/10.1016/j.cocis.2019.12.005 )

M. Delgado, R. R. Rainwater, B. Heflin, A. Urbaniak, K. Butler, M. Davidson, R. M. Protacio, G. Baldini, A. Edwards, M. R. Reed, J. Biol. Chem. 298 (2022) 101939 (https://doi.org/10.1016/j.jbc.2022.101939 )

M. Maruoka, P. Zhang, H. Mori, E. Imanishi, D. M. Packwood, H. Harada, H. Kosako, J. Suzuki, Mol. Cell 81 (2021) 1397 (https://doi.org/10.1016/j.molcel.2021.02.025 )

J. Debnath, N. Gammoh, K. M. Ryan, Nat. Rev. Mol. Cell Biol. 24 (2023) 560

(https://doi.org/10.1038/s41580-023-00585-z )

Y. Zhou, H. Manghwar, W. Hu, F. Liu, Int. J. Mol. Sci. 23 (2022) 7301 (https://doi.org/10.3390/ijms23137301 )

G. N. Kaluđerović, V. M. Đinović, Z. D. Juranić, T. P. Stanojković, T. J. Sabo, J. Inorg. Biochem. 99 (2005) 488 (https://doi.org/10.1016/j.jinorgbio.2004.10.025)

Z. T. A. Ribeiro, E. Machado-Ferreira, L. F. Guimarães, J. Cavaleiro, A. M. A. Britto, N. Redua, L. M. P. de Souza, A. S. Pimentel, P. H. S. Picciani, O. N. Oliveira, C. B. Barreto, C. A. G. Soares, Colloids Surfaces, A 626 (2021) 126984 (https://doi.org/10.1016/j.colsurfa.2021.126984)

R. Csuk, L. Heller, B. Siewert, A. Gutnov, O. Seidelmann, V. Wendisch, Bioorg. Med. Chem. Lett. 24 (2014) 4011 (https://doi.org/10.1016/j.bmcl.2014.06.021).

Most read articles by the same author(s)