The lithium oxide solubility in molten fluoride system CeF3 – FLiNaK

Main Article Content

Irina Zakiryanova
https://orcid.org/0000-0003-4513-2499
Iraida Korzun
https://orcid.org/0000-0002-0901-6477
Elena Nikolaeva
https://orcid.org/0000-0001-9198-3695
Andrey Bovet
https://orcid.org/0000-0002-8628-3747

Abstract

Molten systems based on alkali metal halides with lithium oxide additives are promising as a working medium on pyrochemical reprocessing of nuclear waste. A mixture of alkali metal fluorides of eutectic composition (FLiNaK) is a suggesting solvent due to the high solubility of actinide oxides, low viscosity, high boiling points, low vapor pressure, and resistance to radiation damage. Thermal analysis, XRD, Raman spectroscopy and thermodynamic simulations were used to obtain evidences on the phase equilibria and liquidus points of the system (0.85 FLiNaK - 0.15 CeF3) - Li2O, containing up to 8.8 mol % lithium oxide. The solubility of lithium oxide in the fluoride melt FLiNaK - CeF3 and the thermodynamic parameters of dissolution were obtained. The eutectic point (the Li2O content is 3.1 mol %, Tm = 489 ºС) and two peritectic points (lithium oxide content are 3.2 and 4.2 mol %, and liquidus points are 497 and 549 ºС, respectively) were found. Thermodynamic simulation results show an exothermic effect due to interaction between lithium oxide and fluoride melt. The interaction product oxyfluoride CeOF was detected by XRD analysis and Raman spectroscopy.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
I. . Zakiryanova, I. Korzun, E. Nikolaeva, and A. Bovet, “The lithium oxide solubility in molten fluoride system CeF3 – FLiNaK”, J. Serb. Chem. Soc., Mar. 2024.
Section
Physical Chemistry

References

H. Lee, G.-I. Park, K.-H. Kang, J.-M. Hur, J.-G. Kim, D.-H. Ahn, Y.-Z. Cho, E. H. Kim, Nucl. Eng. Tech. 43 (2011) 317 (https://doi.org/10.5516/NET.2011.43.4.317)

S. M. Jeong, B.H. Park, J.-M. Hur, C.-S. Seo, H. Lee, K.-C. Song, Nucl. Eng. Tech. 42 (2010) 183 (https://doi.org/10.5516/NET.2010.42.2.183)

E.-Y. Choi, C. Y. Won, D.-S.Kang, S.-W. Kim, J. Radioanal. Nucl. Chem. 304 (2015) 535 (https://doi.org/10.1007/s10967-014-3842-2)

Y. P. Zaikov, V. Y. Shishkin, A. M. Potapov, A. E. Dedyukhin, J. of Physics: Conf. Series 1475 (2020) 012027 (https://doi.org/10.1088/1742-6596/1475/1/012027)

M. Iizuka, T. Inoue, M. Ougier, J.-P. Glatz, J. Nucl. Sci. Tech. 44 (2007) 801 (https://doi.org/10.1080/18811248.2007.9711869)

B. H. Park, I. W. Lee, C. S. Seo, Chem. Eng. Sci. 63 (2008) 3485 (https://doi.org/10.1016/j.ces.2008.04.021)

D. Kim, S. Bae, J. Kim, T. Park, Y. Park, K. Song, Asian J. Chem. 25 (2013) 705 (http://dx.doi.org/10.14233/ajchem.2013.18)

Y. Kado, T. Goto, R. Hagiwara, J. Chem. Eng. Data 53 (2008) 2816 (https://doi.org/10.1021/je800540c)

A. Mullabaev, O. Tkacheva, V. Shishkin, V. Kovrov, Y. Zaikov, L. Sukhanov, Y. Mochalov, J. Nucl. Mat. 500 (2018) 235 (https://doi.org/10.1016/j.jnucmat.2018.01.004)

R. G. Reddy, S. G. Kumar, Metal. Trans. B 24B (1993) 1031 (https://doi.org/10.1007/BF02660994)

A. A. Maslennikova, P. N. Mushnikov, A. V. Dub, O. Y. Tkacheva, Y. P. Zaikov, Y.-L. Liu, W.-Q. Shi, Materials 16 (2023) 4197 (https://doi.org/10.3390/ma16114197)

X. Guo, J. Sietsma, Y. Yang, A Critical Evaluation of Solubility of Rare Earth Oxides in Molten Fluorides, in Rare Earths Industry, Eds.: I. B. De Lima, W. L. Filho, Elsevir, 2016, p. 223 (https://doi.org/10.1016/B978-0-12-802328-0.00015-2)

A. L. Rollet, E. Veron and C. Bessada, J. Nucl. Mater. 429 (2012) 40 (https://doi.org/10.1016/j.jnucmat.2012.05.010)

O. Beneš, R. J. M. Konings, J. Nucl. Mater. 435 (2013) 164 (https://doi.org/10.1016/j.jnucmat.2012.12.005)

R. Marsac, F. Réal, N. Banik, M. Pédrot, O. Pourret, V. Vallet, Dalton Trans. 46 (2017) 13553 (https://doi.org/10.1039/C7DT02251D)

D. Zakiryanov, J. Mol. Liq. 384 (2023) 122265 (https://doi.org/10.1016/j.molliq.2023.122265)

D. Zakiryanov, Molecular Simulation (2023) 845 (https://doi.org/10.1080/08927022.2023.2193656)

HSC Chemistry 9 [Software], Outokumpu Research Oy: Pori, Finland, 2007.

G. Zong, Z. Zhang, J. Sun, J. Xiao, J. Fluor. Chem. 197 (2017) 134 (https://doi.org/10.1016/j.jfluchem.2017.03.006)

J. Derek, Y. Toshinobu, J. Janz, J. Chem. Eng. Data 27 (1982), 366 (https://doi.org/10.1021/je00029a041)

R. P. Bauman, S. P. S. Porto, Phys. Rev. 161 (1967) 842 (https://doi.org/10.1103/PhysRev.161.842)

P. N. Mushnikov, O. Y. Tkacheva, A. S. Kholkina, Y. P. Zaikov, V. Y. Shishkin, A. V Dub, At. Energy 131 (2022) 263 (https://doi.org/10.1007/s10512-022-00876-2)

F. S. Gittleson, K. Yao, D. G. Kwabi, S. Y. Sayed, W. Ryu, Y. Shao-Horn, A. D. Taylor, Chem Electro Chem. 2 (2015) 1446 (https://doi.org/10.1002/celc.201500218)

T. Osaka, I. Shindo, Solid State Commun. 51 (1984) 421 (https://doi.org/10.1016/0038-1098(84)90126-1)

E. M. Rodrigues, E. R. Souza, J. K. Monteiro, R. D. L. Gaspar, I. O. Mazali, F. A. Sigoli, J. Mater. Chem. 22 (2012) 24109 (https://doi.org/10.1039/c2jm34901a)

J. Hölsä, E. Säilynoja, H. Rahiala, J. Valkonen, Polyhedron 16 (1997) 3421 (https://doi.org/10.1016/S0277-5387(97)00065-X)

E. V. Nikolaeva, I. D. Zakiryanova, A. L. Bovet, I. V. Korzun, Z. Naturforsch. 71 (2016) 731 (https://doi.org/10.1515/zna-2016-0163)

E. V. Nikolaeva, I. D. Zakiryanova, I. V. Korzun, A. L. Bovet, B. D. Antonov, Z. Naturforsch. 70 (2015) 325 (https://doi.org/10.1515/zna-2014-0370).