Analysis and statistical modeling of copper ions biosorption onto calcined chicken eggshell

Main Article Content

Miljan Marković
https://orcid.org/0000-0002-4734-1481
Milan Gorgievski
https://orcid.org/0000-0002-9899-719X
Nada Štrbac
Vesna Grekulović
https://orcid.org/0000-0001-6871-4016
Milica Zdravković
https://orcid.org/0000-0001-9488-9151
Marina Marković
https://orcid.org/0009-0007-7553-6423
Dalibor Stanković
https://orcid.org/0000-0001-7465-1373

Abstract

The study on the possible use of calcined chicken eggshells as a biosorbent for copper ions removal from aqueous solutions, as well as some comparisons between raw and calcined eggshells, are presented in this paper. SEM-EDS and FTIR analysis of the calcined chicken eggshell samples were performed. In addition, the DTA-TGA analysis on raw chicken eggshells was performed. The influence of various process parameters, such as solution pH, stirring rate, biosorbent mass and Cu2+ concentration, was investigated. The kinetic analysis using four different empirical kinetic models was performed. The equilibrium analysis was done using the Langmuir, Freundlich and Temkin isotherm models. The process was optimized using the Response Surface Methodology based on the Box-Behnken Design (RSM-BBD). The obtained results are compared to our previous study on raw eggshells as a biosorbent for Cu2+ removal, in order to determine the justification for biosorbent modification (i.e. the calcination of raw eggshells).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. Marković, “Analysis and statistical modeling of copper ions biosorption onto calcined chicken eggshell”, J. Serb. Chem. Soc., Feb. 2025.
Section
Materials

References

M. Anandh Babu, S. Hemavathi, G. Kousalyedevi, S.P. Shanmuga Priya, Glob. NEST J. 25 (2023) 1 (https://doi.org/10.30955/gnj.005287)

A. H. Jendia, S. Hamzah, A. A. Abuhabib, N. M. El-Ashgar, Water Supply 20 (2020) 2514 (https://doi.org/10.2166/ws.2020.151)

R. Ratnawati, A. Prasetyaningrum, H. Hargono, M. F. Zakaria, Period. Polytech. Chem. Eng. 68 (2024) 239 (https://doi.org/10.3311/PPch.22867)

Y. Liu, H. Wang, Y. Cui, N. Chen, Int. J. Environ. Res. Public Health 20 (2023) 3885. (https://doi.org/10.3390/ijerph20053885)

P. Musonge, C. Harripersadth, Mater. Res. Forum 91 (2021) 171 (https://doi.org/10.21741/9781644901144-5)

S. A. Al-Saydeh, M. H. El-Naas, S. J. Zaidi, J. Ind. Eng. Chem. 56 (2017) 35 (https://doi.org/10.1016/j.jiec.2017.07.026)

K. Vijayaraghavan, U. M. Joshi, Environ. Eng. Sci. 5 (2017) 180532 (https://doi.org/10.1098/rsos.180532)

M. Marković, M. Gorgievski, N. Štrbac, V. Grekulović, K. Božinović, M. Zdravković, M. Vuković, Metals 13 (2023) 206 (https://doi.org/10.3390/met13020206)

R. Slimani, I. E. Ouahabi, F. Abidi, M. El Haddad, A. Regti, M. R. Laamari, S. El Antri, S. Lazar, J. Taiwan Inst. Chem. Eng. 45 (2013) 1578 (https://doi.org/10.1016/j.jtice.2013.10.009)

M. Samimi, Glob. J. Environ. Sci. Manag. 10 (2023) (https://doi.org/10.22034/gjesm.2024.01.03)

H. Qiu, B. Pan, Q-j. Zhang, W. Zhang, Q-x. Zhang, J. Zhejiang Univ. – Sci. A 10 (2009) 716 (https://doi.org/10.1631/jzus.A0820524)

K. M. Elsherif, R. A. Abdullah Saad, A. M. Ewlad-Ahmed, A. A. Treban, A. M. Iqneebir, Adv. J. Chem. A 6 (2023) 334 (https://doi.org/10.48309/ajca.2024.415865.1415)

S. Akazdam, M. Chafi, W. Yassine, L. Sebbahi, B. Gourich, N. Barka, J. Mater. Environ. Sci 8 (2017) 784 (https://www.jmaterenvironsci.com/Document/vol8/vol8_N3/82-JMES-ICMES-Akazdam.pdf)

T. Witoon, Ceram. Int. 37 (2011) 3291-3298 (https://doi.org/10.1016/j.ceramint.2011.05.125)

T. E. Kose, B. Kivanc, Chem. Eng. J. 178 (2011) 34 (https://doi.org/10.1016/j.cej.2011.09.129)

O. G. Agbabiaka, I. O. Oladele, A. D. Akinwekomi, A. A. Adediran, A. O. Balogun, O. G. Olasunkanm, T. M. A. Olayanju, Sci. Afr. 8 (2020) e00452 (https://doi.org/10.1016/j.sciaf.2020.e00452)

Y. Erdal, M.N.M. Al-Nuaimy, M. Saleh, Z. Isik, N. Dizge, D. Balakrishnan, Environ. Res. 212A (2022) 113210 (https://doi.org/10.1016/j.envres.2022.113210)

V. L. Gurav, R. A. Samant, Orient. J. Chem. 37 (2021) 128-135 (http://dx.doi.org/10.13005/ojc/370117)

A. V. Borhade, A. S. Kale, Appl. Water Sci. 7 (2017) 4255-4268 (https://doi.org/10.1007/s13201-017-0558-9)

B. Haddad, A. Mittal, J. Mittal, A. Paolone, D. Villemin, M. Debdab, G. Mimanne, A. Habibi, Z. Hamidi, M. Boumediene, E. Belarbi, CDC 33 (2021) 100717 (https://doi.org/10.1016/j.cdc.2021.100717)

Y. Han, J. Trakulmututa, T. Amornsakchai, S. Boonyuen, N. Prigyai, S. M. Smith, ACS Omega 8 (2023) 46663-46675 (https://doi.org/10.1021/acsomega.3c05758)

M. Kantcheva, Appl. Catal. B: Environ. 42 (2003) 89-109. (https://doi.org/10.1016/S0926-3373(02)00218-7)

L. H. Gai, S. G. Wang, W. X. Gong, X. W. Liu, B. Y. Gao, H. Y. Zhang, J. Chem. Technol. Biotechnol. 83 (2008) 806 (https://doi.org/10.1002/jctb.1869)

M. Yunus Pamukoglu, F. Kargi, Process Biochem. 41 (2006) 1047-1054 (https://doi.org/10.1016/j.procbio.2005.11.010)

G. C. Domnez, Z. Aksu, A. Ozturk, T. Kutsal, Process Biochem. 34 (1999) 885 (https://doi.org/10.1016/S0032-9592(99)00005-9)

S. Tonk, C. Majdik, R. Szep, M. Suciu, E. Rapo, B. Nagy, A.G. Niculae, Rev. Chim. 68 (2017) 1951 (https://doi.org/10.37358/RC.17.9.5800)

P. D. Sasha, S. Chowdhury, M. Mondal, K. Sinha, Sep. Sci. Technol. 47 (2012) (https://doi.org/10.1080/01496395.2011.610397)

M. A. Fawzy, H. M. Al-Yasi, T. M. Galal, R. Z. Hamza, T. G. Abdelkader, E. F. Ali, S. H. A. Hassan, Sci. Rep. 12 (2022) 8583 (https://doi.org/10.1038/s41598-022-12233-1)

M. A. Fawzy, Adv. Powder Technol. 31 (2020) 3724 (https://doi.org/10.1016/j.apt.2020.07.014)

A. Choinska-Pulit, J. Sobolczyk-Bednarek, W. Laba, Ecotoxicol. Environ. Saf. 149 (2018) 275 (https://doi.org/10.1016/j.ecoenv.2017.12.008)

Most read articles by the same author(s)