Analysis and statistical modeling of copper ions biosorption onto calcined chicken eggshell
Main Article Content
Abstract
The study on the possible use of calcined chicken eggshells as a biosorbent for copper ions removal from aqueous solutions, as well as some comparisons between raw and calcined eggshells, are presented in this paper. SEM-EDS and FTIR analysis of the calcined chicken eggshell samples were performed. In addition, the DTA-TGA analysis on raw chicken eggshells was performed. The influence of various process parameters, such as solution pH, stirring rate, biosorbent mass and Cu2+ concentration, was investigated. The kinetic analysis using four different empirical kinetic models was performed. The equilibrium analysis was done using the Langmuir, Freundlich and Temkin isotherm models. The process was optimized using the Response Surface Methodology based on the Box-Behnken Design (RSM-BBD). The obtained results are compared to our previous study on raw eggshells as a biosorbent for Cu2+ removal, in order to determine the justification for biosorbent modification (i.e. the calcination of raw eggshells).
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
M. Anandh Babu, S. Hemavathi, G. Kousalyedevi, S.P. Shanmuga Priya, Glob. NEST J. 25 (2023) 1 (https://doi.org/10.30955/gnj.005287)
A. H. Jendia, S. Hamzah, A. A. Abuhabib, N. M. El-Ashgar, Water Supply 20 (2020) 2514 (https://doi.org/10.2166/ws.2020.151)
R. Ratnawati, A. Prasetyaningrum, H. Hargono, M. F. Zakaria, Period. Polytech. Chem. Eng. 68 (2024) 239 (https://doi.org/10.3311/PPch.22867)
Y. Liu, H. Wang, Y. Cui, N. Chen, Int. J. Environ. Res. Public Health 20 (2023) 3885. (https://doi.org/10.3390/ijerph20053885)
P. Musonge, C. Harripersadth, Mater. Res. Forum 91 (2021) 171 (https://doi.org/10.21741/9781644901144-5)
S. A. Al-Saydeh, M. H. El-Naas, S. J. Zaidi, J. Ind. Eng. Chem. 56 (2017) 35 (https://doi.org/10.1016/j.jiec.2017.07.026)
K. Vijayaraghavan, U. M. Joshi, Environ. Eng. Sci. 5 (2017) 180532 (https://doi.org/10.1098/rsos.180532)
M. Marković, M. Gorgievski, N. Štrbac, V. Grekulović, K. Božinović, M. Zdravković, M. Vuković, Metals 13 (2023) 206 (https://doi.org/10.3390/met13020206)
R. Slimani, I. E. Ouahabi, F. Abidi, M. El Haddad, A. Regti, M. R. Laamari, S. El Antri, S. Lazar, J. Taiwan Inst. Chem. Eng. 45 (2013) 1578 (https://doi.org/10.1016/j.jtice.2013.10.009)
M. Samimi, Glob. J. Environ. Sci. Manag. 10 (2023) (https://doi.org/10.22034/gjesm.2024.01.03)
H. Qiu, B. Pan, Q-j. Zhang, W. Zhang, Q-x. Zhang, J. Zhejiang Univ. – Sci. A 10 (2009) 716 (https://doi.org/10.1631/jzus.A0820524)
K. M. Elsherif, R. A. Abdullah Saad, A. M. Ewlad-Ahmed, A. A. Treban, A. M. Iqneebir, Adv. J. Chem. A 6 (2023) 334 (https://doi.org/10.48309/ajca.2024.415865.1415)
S. Akazdam, M. Chafi, W. Yassine, L. Sebbahi, B. Gourich, N. Barka, J. Mater. Environ. Sci 8 (2017) 784 (https://www.jmaterenvironsci.com/Document/vol8/vol8_N3/82-JMES-ICMES-Akazdam.pdf)
T. Witoon, Ceram. Int. 37 (2011) 3291-3298 (https://doi.org/10.1016/j.ceramint.2011.05.125)
T. E. Kose, B. Kivanc, Chem. Eng. J. 178 (2011) 34 (https://doi.org/10.1016/j.cej.2011.09.129)
O. G. Agbabiaka, I. O. Oladele, A. D. Akinwekomi, A. A. Adediran, A. O. Balogun, O. G. Olasunkanm, T. M. A. Olayanju, Sci. Afr. 8 (2020) e00452 (https://doi.org/10.1016/j.sciaf.2020.e00452)
Y. Erdal, M.N.M. Al-Nuaimy, M. Saleh, Z. Isik, N. Dizge, D. Balakrishnan, Environ. Res. 212A (2022) 113210 (https://doi.org/10.1016/j.envres.2022.113210)
V. L. Gurav, R. A. Samant, Orient. J. Chem. 37 (2021) 128-135 (http://dx.doi.org/10.13005/ojc/370117)
A. V. Borhade, A. S. Kale, Appl. Water Sci. 7 (2017) 4255-4268 (https://doi.org/10.1007/s13201-017-0558-9)
B. Haddad, A. Mittal, J. Mittal, A. Paolone, D. Villemin, M. Debdab, G. Mimanne, A. Habibi, Z. Hamidi, M. Boumediene, E. Belarbi, CDC 33 (2021) 100717 (https://doi.org/10.1016/j.cdc.2021.100717)
Y. Han, J. Trakulmututa, T. Amornsakchai, S. Boonyuen, N. Prigyai, S. M. Smith, ACS Omega 8 (2023) 46663-46675 (https://doi.org/10.1021/acsomega.3c05758)
M. Kantcheva, Appl. Catal. B: Environ. 42 (2003) 89-109. (https://doi.org/10.1016/S0926-3373(02)00218-7)
L. H. Gai, S. G. Wang, W. X. Gong, X. W. Liu, B. Y. Gao, H. Y. Zhang, J. Chem. Technol. Biotechnol. 83 (2008) 806 (https://doi.org/10.1002/jctb.1869)
M. Yunus Pamukoglu, F. Kargi, Process Biochem. 41 (2006) 1047-1054 (https://doi.org/10.1016/j.procbio.2005.11.010)
G. C. Domnez, Z. Aksu, A. Ozturk, T. Kutsal, Process Biochem. 34 (1999) 885 (https://doi.org/10.1016/S0032-9592(99)00005-9)
S. Tonk, C. Majdik, R. Szep, M. Suciu, E. Rapo, B. Nagy, A.G. Niculae, Rev. Chim. 68 (2017) 1951 (https://doi.org/10.37358/RC.17.9.5800)
P. D. Sasha, S. Chowdhury, M. Mondal, K. Sinha, Sep. Sci. Technol. 47 (2012) (https://doi.org/10.1080/01496395.2011.610397)
M. A. Fawzy, H. M. Al-Yasi, T. M. Galal, R. Z. Hamza, T. G. Abdelkader, E. F. Ali, S. H. A. Hassan, Sci. Rep. 12 (2022) 8583 (https://doi.org/10.1038/s41598-022-12233-1)
M. A. Fawzy, Adv. Powder Technol. 31 (2020) 3724 (https://doi.org/10.1016/j.apt.2020.07.014)
A. Choinska-Pulit, J. Sobolczyk-Bednarek, W. Laba, Ecotoxicol. Environ. Saf. 149 (2018) 275 (https://doi.org/10.1016/j.ecoenv.2017.12.008)