Sustainable synthesis of samarium molybdate nanoparticles: a simple electrochemical tool for detection of environmental pollutant Metol
Main Article Content
Abstract
This study focused on creating a highly effective sensor for detecting and quantifying the nitrogen-organic pollutant Metol (MTL). For this purpose, samarium-molybdate (Sm2(MoO4)3) nanoparticles were synthesized using an eco-friendly, organic solvent-free, and cost-effective hydrothermal method. These nanoparticles were utilized as a modifier of carbon paste electrodes (CPE), showing exceptional catalytic efficiency. Electrochemical measurements revealed that the developed electrode facilitates electron transfer processes and enhances the catalytic response. The resulting Sm2(MoO4)3/CPE sensor exhibited a broad linear range of 0.1-100 and 100-300 μM of MTL, with low detection and quantification limits of 0.047 µM and 0.156 µM, respectively, at pH 3 in a Britton-Robinson buffer solution (BRBS) as the supporting electrolyte. The findings from the analysis of real water samples from various sources using this sensor were encouraging, suggesting that this method could offer a cost-effective, rapid, and sensitive sensor for ambient MTL monitoring.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
-
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
Grant numbers 451-03-66/2024-03/200168;451-03-66/2024-03/200026
References
S. S. Rex Shanlee, R. Sundaresan, S. M. Chen, R. Balaji, T. Jeyapragasam, J. Y. Peng, A. I. Jothi, Surf. Interf. 40 (2023) 103020 (https://doi.org/10.1016/j.surfin.2023.103020)
K. Venkatesh, B. Muthukutty, S. M. Chen, P. Karuppasamy, A. S. Haidyrah, C. Karuppiah, C. C. Yang, S. K. Ramaraj, J. Ind. Eng. Chem. 106 (2022) 287–296 (https://doi.org/10.1016/j.jiec.2021.11.005)
W. Sun, Q. Jiang, Y. Wang, K. Jiao, Sens. Act. B Chem. 136 (2009) 419–424 (https://doi.org/10.1016/j.snb.2008.10.003)
X. Niu, L. Yan, X. Li, A. Hu, C. Zheng, Y. Zhang, W. Sun, Int. J. Electrochem. Sci. 11 (2016) 1720–1729 (https://doi.org/10.1016/S1452-3981(23)15955-4)
K. Mariappan, S. Sakthinathan, S.-M. Chen, S. Alagarsamy, T.-W. Chiu, J Electrochem. Soc. 170 (2023) 126505 (https://doi.org/10.1149/1945-7111/ad1551)
S. Samanta, R. Srivastava, J. Electroanal. Chem. 777 (2016) 48–57 (https://doi.org/10.1016/j.jelechem.2016.07.024)
L. Lunar, Water Res. 34 (2000) 3400–3412 (https://doi.org/10.1016/S0043-1354(00)00089-0)
C. Koventhan, V. Vinothkumar, S.-M. Chen, T.-W. Chen, A. Sangili, K. Pandi, V. Sethupathi, Int. J. Electrochem. Sci. 15 (2020) 7390–7406 (https://doi.org/10.20964/2020.08.43)
C. S. P. Sastry, T. E. Divakar, U. Viplava Prasad, Talanta 33 (1986) 164–166 (https://doi.org/10.1016/0039-9140(86)80034-0)
R. R. Krishna, C. S. P. Sastry, Fresenius’ Zeitschrift Für Analytische Chemie 296 (1979) 46–46 (https://doi.org/10.1007/BF00481172)
W. Sun, Q. Jiang, K. Jiao, J. Sol. State Electrochem. 13 (2009) 1193–1199 (https://doi.org/10.1007/s10008-008-0646-8)
R. Andreozzi, Water Res. 34 (2000) 463–472 (https://doi.org/10.1016/S0043-1354(99)00183-9)
X. Hu, J. Qian, J. Yang, X. Hu, Y. Zou, N. Yang, J. Electroanal. Chem. 947 (2023) 117756 (https://doi.org/10.1016/j.jelechem.2023.117756)
M. M. Stanley, A. Sherlin V, S.-F. Wang, B. Sriram, J. N. Baby, M. George, J. Environ. Chem. Eng. 11 (2023) 110185 (https://doi.org/10.1016/j.jece.2023.110185)
B. Mutharani, P. K. Gopi, S.-M. Chen, H.-C. Tsai, F. Ahmed, A. S. Haidyrah, P. Ranganathan, Ecotoxicol. Environ. Saf. 220 (2021) 112373 (https://doi.org/10.1016/j.ecoenv.2021.112373)
K. Mariappan, D. D. F. Packiaraj, T.-W. Chen, S.-M. Chen, S. Sakthinathan, S. V. Alagarsamy, A. M. Al-Mohaimeed, W. A. Al-onazi, M. S. Elshikh, T.-W. Chiu, New J. Chem. 48 (2024) 6438-6450 (https://doi.org/10.1039/D3NJ06004G)
F. Packiaraj Don Disouza, S. Alagarsamy, T.-W. Chen, S.-M. Chen, W.-C. Liou, B.-S. Lou, W. A. Al-onazi, M. Ajmal Ali, M. S. Elshikh, J. Ind. Eng. Chem. 135 (2024) 406-415 (https://doi.org/10.1016/J.JIEC.2024.01.052)
T. Mutić, D. Stanković, D. Manojlović, D. Petrić, F. Pastor, V. V. Avdin, M. Ognjanović, V. Stanković, Electrochem. 5 (2024) 45–56 (https://doi.org/10.3390/electrochem5010003)
N. Nataraj, T.-W. Chen, S.-M. Chen, T. Kokulnathan, F. Ahmed, T. Alshahrani, N. Arshi, J. Taiwan Inst. Chem. Eng. 156 (2024) 105348 (https://doi.org/10.1016/j.jtice.2024.105348)
S. Knežević, M. Ognjanović, V. Stanković, M. Zlatanova, A. Nešić, M. Gavrović-Jankulović, D. Stanković, Biosensors (Basel) 12 (2022) 705 (https://doi.org/10.3390/bios12090705)
M. Ognjanović, D. M. Stanković, Ž. K. Jaćimović, M. Kosović‐Perutović, J. F. M. L. Mariano, S. Krehula, S. Musić, B. Antić, Electroanalysis 34 (2022) 1431–1440 (https://doi.org/10.1002/elan.202100602)
T. Mutić, M. Ognjanović, I. Kodranov, M. Robić, S. Savić, S. Krehula, D. M. Stanković, Anal. Bioanal. Chem. 415 (2023) 4445–4458 (https://doi.org/10.1007/s00216-023-04617-70
S. Behvandi, A. Sobhani-Nasab, M. A. Karimi, E. Sohouli, M. S. Karimi, M. R. Ganjali, F. Ahmadi, M. Rahimi-Nasrabadi, Polyhedron 180 (2020) 114424 (https://doi.org/10.1016/j.poly.2020.114424)
K. P. Mani, V. G., P. R. Biju, C. Joseph, N. V. Unnikrishnan, M. A. Ittyachen, ECS J. Sol. State Sci. Technol. 4 (2015) R67–R71 (https://doi.org/10.1149/2.0131505jss)
Z. Rezapoor-Fashtali, M. R. Ganjali, F. Faridbod, Biosensors (Basel) 12 (2022) 720 (https://doi.org/10.3390/bios12090720)
M. V. Raskina, V. A. Morozov, A. V. Pavlenko, I. G. Samatov, I. V. Arkhangel’Skii, S. Stefanovich, B. I. Lazoryak, Russ. J. Inorg. Chem. 60 (2015) 84–91 (https://doi.org/10.1134/S0036023615010118)
S. S. Saleem, G. Aruldhas, H. D. Bist, Spectrochim. Acta A 39 (1983) 1049–1053 (https://doi.org/10.1016/0584-8539(83)80124-X)
W. Dridi, M. F. Zid, M. Maczka, Adv. Mat. Sci. Eng. 2017 (2017) 1–8 (https://doi.org/10.1155/2017/6123628)
Z. Zhang, X. Liu, Y. Wu, H. Zhao, J. Sol. State Electrochem. 19 (2015) 469–475 (https://doi.org/10.1007/s10008-014-2624-7)
H. Zhao, B. Chen, C. Cheng, W. Xiong, Z. Wang, Z. Zhang, L. Wang, X. Liu, Ceram. Int. 41 (2015) 15266–15271 (https://doi.org/10.1016/j.ceramint.2015.07.213)
H. Zhao, N. Hu, R. Xu, H. Liu, J. Liu, Q. Ran, Ceram. Int. 46 (2020) 21805–21809 (https://doi.org/10.1016/j.ceramint.2020.05.256)
V. Stanković, S. Đurđić, M. Ognjanović, G. Zlatić, D. Stanković, Sensors 24 (2024) 705 (https://doi.org/10.3390/s24020705)
V. C. Valsalakumar, S. Vasudevan, Langmuir 39 (2023) 15730–15739 (https://doi.org/10.1021/acs.langmuir.3c02303)
A. Afkhami, F. Soltani-Felehgari, T. Madrakian, H. Ghaedi, Biosens. Bioelectron. 51 (2014) 379–385 (https://doi.org/10.1016/j.bios.2013.07.056)
S. P. Thangavelu, T.-W. Chen, S.-M. Chen, K. Thangavelu, B.-S. Lou, T. saad Algarni, W. A. Al-onazi, M. S. Elshikh, Carbon N Y 223 (2024) 119026 (https://doi.org/10.1016/j.carbon.2024.119026)
S. Alagarsamy, R. Sundaresan, T.-W. Chen, S.-M. Chen, B.-S. Lou, B. Ramachandran, S. K. Ramaraj, M. Ajmal Ali, M. S. Elshikh, J. Yu, Microchem. J. 193 (2023) 108960 (https://doi.org/10.1016/j.microc.2023.108960)
S. Jose, A. George, A. R. Cherian, A. Varghese, Surf. Interf. 35 (2022) 102416 (https://doi.org/10.1016/j.surfin.2022.102416).