Sustainable synthesis of samarium molybdate nanoparticles: a simple electrochemical tool for detection of environmental pollutant metol Scientific paper

Main Article Content

Tijana Mutić
https://orcid.org/0009-0009-5461-2970
Vesna Stanković
https://orcid.org/0000-0002-0394-0503
Jadranka Milikić
https://orcid.org/0000-0003-2266-6738
Danica Bajuk-Bogdanović
https://orcid.org/0000-0003-2443-376X
Astrid Ortner
https://orcid.org/0000-0001-8604-1273
Kurt Kalcher
Dragan Manojlović
Dalibor Stankovic
http://orcid.org/0000-0001-7465-1373

Abstract

This study focused on creating a highly effective sensor for detecting and quantifying the nitrogen-organic pollutant metol (MTL). For this purpose, samarium molybdate (Sm2(MoO4)3) nanoparticles were synthesized using an eco-friendly, organic solvent-free and cost-effective hydrothermal method. These nanoparticles were used as a modifier of carbon paste electrodes (CPE), showing exceptional catalytic efficiency. Electrochemical measurements rev­ealed that the developed electrode facilitates electron transfer processes and enhances the catalytic response. The resulting Sm2(MoO4)3/CPE sensor exhi­bited a broad linear range of 0.1–100 and 100–300 μM of MTL, with low det­ection and quantification limits of 0.047 and 0.156 µM, respectively, at pH 3 in a Britton–Robinson buffer solution (BRBS) as the supporting electrolyte. The findings from the analysis of real water samples from various sources using this sensor were encouraging, suggesting that this method could offer a cost-effective, rapid and sensitive sensor for ambient MTL monitoring.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
T. Mutić, “Sustainable synthesis of samarium molybdate nanoparticles: a simple electrochemical tool for detection of environmental pollutant metol: Scientific paper”, J. Serb. Chem. Soc., vol. 89, no. 12, pp. 1571–1585, Jan. 2025.
Section
In Memoriam Issue Devoted to Prof. Dragan Veselinović

Funding data

References

S. S. Rex Shanlee, R. Sundaresan, S. M. Chen, R. Balaji, T. Jeyapragasam, J. Y. Peng, A. I. Jothi, Surf. Interf. 40 (2023) 103020 (https://doi.org/10.1016/j.surfin.2023.103020)

K. Venkatesh, B. Muthukutty, S. M. Chen, P. Karuppasamy, A. S. Haidyrah, C. Karuppiah, C. C. Yang, S. K. Ramaraj, J. Ind. Eng. Chem. 106 (2022) 287 (https://doi.org/10.1016/j.jiec.2021.11.005)

W. Sun, Q. Jiang, Y. Wang, K. Jiao, Sensors Actuators, B 136 (2009) 419 (https://doi.org/10.1016/j.snb.2008.10.003)

X. Niu, L. Yan, X. Li, A. Hu, C. Zheng, Y. Zhang, W. Sun, Int. J. Electrochem. Sci. 11 (2016) 1720 (https://doi.org/10.1016/S1452-3981(23)15955-4)

K. Mariappan, S. Sakthinathan, S.-M. Chen, S. Alagarsamy, T.-W. Chiu, J Electrochem. Soc. 170 (2023) 126505 (https://doi.org/10.1149/1945-7111/ad1551)

S. Samanta, R. Srivastava, J. Electroanal. Chem. 777 (2016) 48 (https://doi.org/10.1016/j.jelechem.2016.07.024)

L. Lunar, Water Res. 34 (2000) 3400 (https://doi.org/10.1016/S0043-1354(00)00089-0)

C. Koventhan, V. Vinothkumar, S.-M. Chen, T.-W. Chen, A. Sangili, K. Pandi, V. Sethupathi, Int. J. Electrochem. Sci. 15 (2020) 7390 (https://doi.org/10.20964/2020.08.43)

C. S. P. Sastry, T. E. Divakar, U. Viplava Prasad, Talanta 33 (1986) 164 (https://doi.org/10.1016/0039-9140(86)80034-0)

R. R. Krishna, C. S. P. Sastry, Fresenius’ Zeitsch. Anal. Chem 296 (1979) 46 (https://doi.org/10.1007/BF00481172)

W. Sun, Q. Jiang, K. Jiao, J. Solid State Electrochem. 13 (2009) 1193 (https://doi.org/10.1007/s10008-008-0646-8)

R. Andreozzi, Water Res. 34 (2000) 463 (https://doi.org/10.1016/S0043-1354(99)00183-9)

X. Hu, J. Qian, J. Yang, X. Hu, Y. Zou, N. Yang, J. Electroanal. Chem. 947 (2023) 117756 (https://doi.org/10.1016/j.jelechem.2023.117756)

M. M. Stanley, A. Sherlin V, S.-F. Wang, B. Sriram, J. N. Baby, M. George, J. Environ. Chem. Eng. 11 (2023) 110185 (https://doi.org/10.1016/j.jece.2023.110185)

B. Mutharani, P. K. Gopi, S.-M. Chen, H.-C. Tsai, F. Ahmed, A. S. Haidyrah, P. Ranganathan, Ecotoxicol. Environ. Saf. 220 (2021) 112373 (https://doi.org/10.1016/j.ecoenv.2021.112373)

K. Mariappan, D. D. F. Packiaraj, T.-W. Chen, S.-M. Chen, S. Sakthinathan, S. V. Alagarsamy, A. M. Al-Mohaimeed, W. A. Al-onazi, M. S. Elshikh, T.-W. Chiu, New J. Chem. 48 (2024) 6438 (https://doi.org/10.1039/D3NJ06004G)

F. Packiaraj Don Disouza, S. Alagarsamy, T.-W. Chen, S.-M. Chen, W.-C. Liou, B.-S. Lou, W. A. Al-onazi, M. Ajmal Ali, M. S. Elshikh, J. Ind. Eng. Chem. 135 (2024) 406 (https://doi.org/10.1016/J.JIEC.2024.01.052)

T. Mutić, D. Stanković, D. Manojlović, D. Petrić, F. Pastor, V. V. Avdin, M. Ognjanović, V. Stanković, Electrochem. 5 (2024) 45 (https://doi.org/10.3390/electrochem5010003)

N. Nataraj, T.-W. Chen, S.-M. Chen, T. Kokulnathan, F. Ahmed, T. Alshahrani, N. Arshi, J. Taiwan Inst. Chem. Eng. 156 (2024) 105348 (https://doi.org/10.1016/j.jtice.2024.105348)

S. Knežević, M. Ognjanović, V. Stanković, M. Zlatanova, A. Nešić, M. Gavrović-Jankulović, D. Stanković, Biosensors (Basel) 12 (2022) 705 (https://doi.org/10.3390/bios12090705)

M. Ognjanović, D. M. Stanković, Ž. K. Jaćimović, M. Kosović‐Perutović, J. F. M. L. Mariano, S. Krehula, S. Musić, B. Antić, Electroanalysis 34 (2022) 1431 (https://doi.org/10.1002/elan.202100602)

T. Mutić, M. Ognjanović, I. Kodranov, M. Robić, S. Savić, S. Krehula, D. M. Stanković, Anal. Bioanal. Chem. 415 (2023) 4445 (https://doi.org/10.1007/s00216-023-04617-70

S. Behvandi, A. Sobhani-Nasab, M. A. Karimi, E. Sohouli, M. S. Karimi, M. R. Ganjali, F. Ahmadi, M. Rahimi-Nasrabadi, Polyhedron 180 (2020) 114424 (https://doi.org/10.1016/j.poly.2020.114424)

K. P. Mani, V. G., P. R. Biju, C. Joseph, N. V. Unnikrishnan, M. A. Ittyachen, ECS J. Solid State Sci. Technol. 4 (2015) R67 (https://doi.org/10.1149/2.0131505jss)

Z. Rezapoor-Fashtali, M. R. Ganjali, F. Faridbod, Biosensors (Basel) 12 (2022) 720 (https://doi.org/10.3390/bios12090720)

M. V. Raskina, V. A. Morozov, A. V. Pavlenko, I. G. Samatov, I. V. Arkhangel’Skii, S. Stefanovich, B. I. Lazoryak, Russ. J. Inorg. Chem. 60 (2015) 84 (https://doi.org/10.1134/S0036023615010118)

S. S. Saleem, G. Aruldhas, H. D. Bist, Spectrochim. Acta, A 39 (1983) 1049 (https://doi.org/10.1016/0584-8539(83)80124-X)

W. Dridi, M. F. Zid, M. Maczka, Adv. Mat. Sci. Eng. 2017 (2017) 1 (https://doi.org/10.1155/2017/6123628)

Z. Zhang, X. Liu, Y. Wu, H. Zhao, J. Solid State Electrochem. 19 (2015) 469 (https://doi.org/10.1007/s10008-014-2624-7)

H. Zhao, B. Chen, C. Cheng, W. Xiong, Z. Wang, Z. Zhang, L. Wang, X. Liu, Ceram. Int. 41 (2015) 15266 (https://doi.org/10.1016/j.ceramint.2015.07.213)

H. Zhao, N. Hu, R. Xu, H. Liu, J. Liu, Q. Ran, Ceram. Int. 46 (2020) 21805 (https://doi.org/10.1016/j.ceramint.2020.05.256)

V. Stanković, S. Đurđić, M. Ognjanović, G. Zlatić, D. Stanković, Sensors 24 (2024) 705 (https://doi.org/10.3390/s24020705)

V. C. Valsalakumar, S. Vasudevan, Langmuir 39 (2023) 15730 (https://doi.org/10.1021/acs.langmuir.3c02303)

A. Afkhami, F. Soltani-Felehgari, T. Madrakian, H. Ghaedi, Biosens. Bioelectron. 51 (2014) 379 (https://doi.org/10.1016/j.bios.2013.07.056)

S. P. Thangavelu, T.-W. Chen, S.-M. Chen, K. Thangavelu, B.-S. Lou, T. saad Algarni, W. A. Al-onazi, M. S. Elshikh, Carbon N.Y. 223 (2024) 119026 (https://doi.org/10.1016/j.carbon.2024.119026)

S. Alagarsamy, R. Sundaresan, T.-W. Chen, S.-M. Chen, B.-S. Lou, B. Ramachandran, S. K. Ramaraj, M. Ajmal Ali, M. S. Elshikh, J. Yu, Microchem. J. 193 (2023) 108960 (https://doi.org/10.1016/j.microc.2023.108960)

S. Jose, A. George, A. R. Cherian, A. Varghese, Surfaces Interf. 35 (2022) 102416 (https://doi.org/10.1016/j.surfin.2022.102416).

Most read articles by the same author(s)