Adsorptive removal of Pb(II) from industrial effluent using nitric acid modified activated carbon: Optimization using Taguchi method
Main Article Content
Abstract
The study aimed to examine the use of nitric acid modified granular activated carbon to treat the wastewater of lead-acid battery recycling unit for lead removal. The adsorbent was characterized using FTIR, SEM, and XRD analysis. Surface functional groups, surface morphology and crystallinity has been changed due to modification. The batch adsorption study was conducted to evaluate the effects of adsorbent dose, initial pH, and contact time on adsorption performance for lead removal. Experiments were performed according to Taguchi design of experiment method and factors were optimized based on SNR analysis to maximize the response. The ideal factor values were found as pH 6, adsorbent dose of 0.05 g, and time of 240 minutes for the adsorption of lead onto adsorbent with the adsorbent uptake capacity of 9.93 mg g-1. From ANOVA analysis pH was found most significant factor with F-value of 28.07. Isotherm and kinetic studies were also carried out to understand the mechanism of adsorption. Adsorption was found to follow the Langmuir isotherm and second order kinetic model.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
S. Meshram, R. S. Thakur, G. Jyoti, C. Thakur, A. B. Soni, J. Indian Chem. Soc. 99 (2022) 100469 (https://doi.org/10.1016/j.jics.2022.100469)
M. Caccin, M. Giorgi, F. Giacobbo, M. D. Ros, L. Besozzi, M. Mariani, Desalin. Water Treat. 57 (2016) 4557 (https://doi.org/10.1080/19443994.2014.992974)
S. Meshram, C. Thakur, A. B. Soni, J. Serb. Chem. Soc. 85 (2020) 953 (https://doi.org/10.2298/JSC191103015M)
S. Meshram, S. Dharmadhikari, R. S. Thakur, C. Thakur, A. B. Soni, J. Hazard. Mater. Adv. 10 (2023) 10297 (https://doi.org/10.1016/j.hazadv.2023.100297)
C. Thakur, I. D. Mall, V. C. Srivastava, Theor. Found. Chem. Eng. 48 (2014) 60. (https://doi.org/10.1134/S004057951401014X)
C. P. Dwivedi, J. N. Sahu, C. R. Mohanty, B. R. Mohan, B. C. Meikap, J. Hazard. Mater. 156 (2008) 596 (https://doi.org/10.1016/j.jhazmat.2007.12.097)
J. P. Chen, X. Wang, Sep. Purif. Technol. 19 (2000) 157.
(https://doi.org/10.1016/S1383-5866(99)00069-6)
M. A. E. Franco, C. B. Carvalho, M. M. Bonetto, R. P. Soares, L. A. Féris, J. Clean. Prod. 161 (2017) 947 (https://doi.org/10.1016/j.jclepro.2017.05.197)
A. H. Sulaymon, D. W. Abood, A. H. Ali, Hydrol. Curr. Res. 2 (2011) 1000120 (http://dx.doi.org/10.4172/2157-7587.1000120)
A. Jusoha, L. S. Shiungb, N. Alia, M. J. M. M. Noor, Desal. 206 (2007) 9 (https://doi.org/10.1016/j.desal.2006.04.048)
K. Wang, J. Zhao, H. Li, X. Zhang, H. Shi, J. Taiwan Inst. Chem. Eng. 61 (2016) 287 (https://doi.org/10.1016/j.jtice.2016.01.006)
H. J. Fan, P. R. Anderson, Sep. Purif. Technol. 45 (2005) 61 (https://doi.org/10.1016/j.seppur.2005.02.009)
S. Yao, J. Zhang, D. Shen, R. Xiao, S. Gu, M. Zhao, J. Liang, J. Colloid Interf. Sci. 463 (2016) 118 (https://doi.org/10.1016/j.jcis.2015.10.047)
Z. Jiang, Y. Liu, X. Sun, F. Tian, F. Sun, C. Liang, W. You, C. Han, C. Li, Langmuir 19 (2003) 731 (https://doi.org/10.1021/la020670d.)
A. M. El-Wakil, W. M. Abou El-Maaty, F. S. Awad. J. Anal. Bioanal. Tech. 5 (2014) 1000187 (https://doi.org/10.4172/2155-9872.1000187)
M. Nandhini, B. Suchithra, R. Saravanathamizhan, D. G. Prakash, J. Electrochem. Sci. Eng. 4 (2014) 227 (https://doi.org/10.5599/jese.2014.0056)
S. Meshram, C. Thakur, A. B. Soni, Pollution 6 (2020) 879 (https://doi.org/10.22059/poll.2020.302442.808)
M. A. Ramos, V. G. Serrano, C. V. Calahorro, A. J. L. Peinado, Spectrosc. Lett. 26 (1993) 1117 (https://doi.org/10.1080/00387019308011598)
V. G. Serrano, M. A. Ramos, A. J. L. Peinado, C. V. Calahorrro, Thermochimica Acta 291 (1997) 109 (https://doi.org/10.1016/S0040-6031(96)03098-5)
V. C. Srivastava, I. D. Mall, I. M. Mishra, J. Hazard. Mater. 134 (2006) 257 (https://doi.org/10.1016/j.jhazmat.2005.11.052)
T. S. Anirudhan, S. S. Sreekumari, J. Environ. Sci. 23 (2011) 1989 (https://doi.org/10.1016/S1001-0742(10)60515-3)
N. A. Kolur, S. Sharifian, T. Kaghazchi, Turkish J. Chem. 43 (2019) 663 (https://doi.org/10.3906/kim-1810-63)
M. Dutta, S. Mishra, M. Kaushik, J. K. Basu, Res. J. Environ. Sci. 5 (2011) 741 (https://doi.org/10.3923/rjes.2011.741.751)
X. Jiang, X. Lan, Y. Song, X. Xing, H. M. A. Hassan, J. Chem. (2019) 8593742 (https://doi.org/10.1155/2019/8593742)
M. Calero, A. Pérez, G. Blázquez, A. Ronda, M. A. M. Lara, Ecol. Eng. 58 (2013) 344 (https://doi.org/10.1016/j.ecoleng.2013.07.012)
S. Abbaszadeh, S. R. W. Alwi, C. Webb, N. Ghasemi, I. I. Muhamad, J. Clean. Prod. 118 (2016) 210 (https://doi.org/10.1016/j.jclepro.2016.01.054)
Z. Guo, J. Zhang, Y. Kang, H. Liu, Ecotoxicol. Environ. Saf. 145 (2017) 442 (https://doi.org/10.1016/j.ecoenv.2017.07.061)
Y. Li, Q. Du, X. Wang, P. Zhang, D. Wang, Z. Wang, Y. Xia, J. Hazard. Mater. 183 (2010) 583 (https://doi.org/10.1016/j.jhazmat.2010.07.063)
S. Meshram, C. Thakur, A. B. Soni, Indian Chem. Eng. 63 (2020) 460 (https://doi.org/10.1080/00194506.2020.1795933).