Ab initio study of mechanism of forming a spiro-Si-heterocyclic ring compound involving Ge from H2Ge=Si: and acetaldehyde

Main Article Content

Xiuhui Lu
Jingjing Ming

Abstract

H2Ge=Si: and its derivatives (X2Ge=Si:, X = H, Me, F, Cl, Br, Ph, Ar,…) are new species. The cycloaddition reactions of H2Ge=Si: is a new area for the study of silylene chemistry. The mechanism of the cycloaddition reaction between singlet H2Ge=Si: and acetaldehyde was investigated using the MP2/6-311++G** method. From the potential energy profile, it could be pre­dicted that the reaction has a dominant reaction pathway. The reaction rule presented is that the two reactants firstly form a four-membered Ge-hetero­cyclic ring silylene through a [2+2] cycloaddition reaction. As the 3p unoc­cupied orbital of the Si: atom in the four-membered Ge-heterocyclic ring silyl­ene and the π orbital of acetaldehyde form a π ® p donor–acceptor bond, the four-membered Ge-heterocyclic ring silylene further combines with acetal­dehyde to form an intermediate. Then the intermediate isomerizes via a tran­sition state to a spiro-Si-heterocyclic ring compound involving Ge.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
X. Lu and J. Ming, “Ab initio study of mechanism of forming a spiro-Si-heterocyclic ring compound involving Ge from H2Ge=Si: and acetaldehyde”, J. Serb. Chem. Soc., vol. 81, no. 6, pp. 633–643, Jul. 2016.
Section
Theoretical Chemistry

References

H. Leclercq, I. Dubois, J. Mol. Spectrosc 76 (1979) 39.

R. Srinivas, D. Sulzle, H. Schwarz, J.Am.Chem.Soc. 113 (1991) 52.

W. H. Warren, W. W. Kevin, J. C. Dennis, J.Chem.Phys. 107 (1997) 8829.

X. H. Lu, H. B. Yu, W. R. Wu, New J.Chem. 29 (2005) 332.

X. H. Lu, H. B. Yu, Y. H. Xu, P. P. Xiang, Y. D. Liu, J.Mol.Struct. Theochem 770 (2006) 185.

X. H. Lu, H. B. Yu, Y. H. Xu, P. P. Xiang, X. Che, Mol.Phys. 105 (2007) 1961.

X. H. Lu, X. Che, H. B. Yu, P. P. Xiang, Y. H. Xu, J.Mol.Struct.Theochem 821 (2007) 53.

X. H. Lu, H. B. Yu, X. Che, P. P. Xiang, Int. J.Quant.Chem. 108 (2008) 1114.

L. A. Curtis, K. Raghavachari, J. A. Pople, J.Chem.Phys. 98 (1993) 1293.

K. Fukui, J.Phys.Chem. 74 (1970) 4161.

K. Ishida, K. Morokuma, A. Komornicki, J.Chem.Phys. 66 (1981) 2153.

J. H. Jensen, M. S. Gordon, J.Am.Chem.Soc. 113 (1991) 7917.